A Simple %-Approximation
Algorithm for MAX SAT

David P. Williamson

Joint work with Matthias Poloczek (Cornell), Georg Schnitger
(Frankfurt), and Anke van Zuylen (William & Mary)

Maximum Satisfiability

* |nput:
n Boolean variables x4, ..., x

n
m clauses C, ... , C,,, with weights Wi 2 0
— each clause is a disjunction of literals,
eg.C; =x1V X2 V X3
e Goal: truth assignment to the variables that
maximizes the weight of the satisfied clauses

Approximation Algorithms

* An a-approximation algorithm runs in
polynomial time and returns a solution of at
least a times the optimal.

* For arandomized algorithm, we ask that the
expected value is at least a times the optimal.

A Y2-approximation algorithm

* Set each x; to true with probability 7.
* Thenif [; is the number of literals in clause j
FE|[Weight satisfied clauses]

= ij Pr|Clause j satisfied|

j=1

e (1—@@”')

1m 21,
3 2.1 = 507

IV

What about a deterministic algorithm?

Use the method of conditional expectations (Erdds
and Selfridge ‘73, Spencer ‘87)

If E|W |x, « true] = E|W|x, < false] then set
x, true, otherwise false.

Similarly, if X;_; is event of how first i —
1 variables are set, thenif E[W|X;_{, x; « true] =

E[W‘Xi_L X; < false], set x; true.
Show inductively that E[W|X;] = E|W] = %OPT.

An LP relaxation

m

maximize E W;z;

subject to Z yi + Z (1—y;) >

i€ P ieN; i€ P;

0 <y

< 1.
0<z2; <

=
. .
I
—_

./] -~

v

)
<
Q

.

[
<
5
<<

Nonlinear randomized rounding

05 |

0

1
0 0.5 1

(Goemans, W 94) Pick any function fsuch that1 — 4% < f(x) < 4* 1. Set x;
true with probability f(y;"), where y™ is an optimal LP solution.

Analysis

Pr[clause C; not satisfied] = H (1—f(y:)) H f (i)
1€ P; 1€N;
< H 4—y: H 4y;<—1
1€ P;j 1EN;
_ 4 (Zier, v Sien, D)
< 477,

EW] > ij Pr|clause C; satisfied]

71=1
> i j(1—4_2;)
j=1
3 — 3
SRV

Integrality gap

m

maximize Z Wiz
j=1
Sll])_j(\('t to Z Yi + Z (l — Y) Z 5 \V/C'J — €xriV \/ £Lj.
ieP; i€ N, ieP; ieN;
0<y <1, r=1,..., n
0<z; <1, 1 =1...., m

371\/332, fl\/CIZ‘Q, 5131\/51_32, ZCl\/SEQ

The resultis tightsince LP solutionz; =z, =z3 =z, = landy, =y, = z
feasible forinstance above, but OPT = 3.

Chan, Lee, Raghavendra, Steurer (STOC 13) show no superpolynomially sized
LP can give a betterintegrality gap.

Current status
NP-hard to approximate better than 0.875 (Hastad '01)

Combinatorial approximation algorithms

— Johnson’salgorithm (1974): Simple Y2-approximation algorithm
(Greedy version of the randomized algorithm)

— Improved analysis of Johnson’salgorithm: ?/;-approx.
guarantee [Chen, Friesen, Zheng 99, Engebretsen '04]

— Randomizing variable order improves guarantee slightly
[Costello, Shapira, Tetali SODA 11]

e Algorithms using Linear or Semidefinite Programming
— Yannakakis ‘94, Goemans, W 94

Question [W "98]: Is it possible to obtain a 3/4-

approximation algorithm without solving a linear
program?

(Selected) results

* Poloczek, Schnitger (SODA 11):

— “randomized Johnson” — combinatorial %-
approximation algorithm

* Van Zuylen (WAOA 11):

— Simplification of “randomized Johnson” probabilities
and analysis

 Buchbinder, Feldman, Naor, and Schwartz (FOCS
12):
— Another %-approximation algorithm for MAX SAT as a
special case of submodular function maximization

— Can be shown that their MAX SAT alg is equivalent to
van Zuylen’s.

(Selected) results

* Poloczek, Schnitger’11
* Van Zuylen '11
 Buchbinder, Feldman, Naor and Schwartz’12

Common properties:

e jteratively set the variables in an “online” fashion,

* the probability of setting x; to true depends on
clauses containing x; or x; that are still undecided.

Today

e Give “textbook” version of Buchbinder et al.’s

algorithm with an even simpler analysis
(Poloczek, van Zuylen, W, LATIN 14)

* Give a simple deterministicversion of the
algorithm (Poloczek, Schnitger, van Zuylen, W,

manuscript)

* Give an experimental analysis that shows that the
algorithm works very well in practice (Poloczek,
W, SEA 2016)

Buchbinder et al.’s approach

 Keep two boundsonthe solution
— Lower bound LB = weight of clauses already satisfied
— Upper bound UB = weight of clauses not yet unsatisfied

* Greedycan focuson two things:
— maximize LB,
— maximize UB,

but either choice hasbad examples...
E.g. X1V X2 (wt1+g), X; (wt 1)

X1 V Xz (Wt 1+€), X7 (wte), X» (wt 1)

 Key idea: make choices to increase B =% (LB+UB)

LB, B,= ¥(LB,+UB,) UB,
(= 0) (=3w;)

Weight of Weight of

undecided undecided
clauses clauses
satisfied by unsatisfied by
x1= true X1= Trtie
(|
| | | | |
I | I | I
—_ 1

LB, LB, Bo= %(LB,+UB,) UB, UB,

Set x, to true

Weight of Weight of

undecided undecided
clauses clauses
satisfied by unsatisfied by
x1= true Xq= ’rruAe
Bl I)

| |] | |

I I | I I
LB, LB, B, UB, UB,

Set x, to true

Weight of

Weight of

undecided undecided
clauses clauses
satisfied by unsatisfied by
x1= true Xq= ’rruke
Bl {)

| | |] | | |

I | I | | |
LB, LB, LB, B, UB, UB, UB,

Set x, to true
or
Set x, to false

Weight of Weight of

undecided undecided
clauses clauses
satisfied by unsatisfied by
x1= true X1= ’rruke
B, By (\
| | |] | | | |
I I I N I |
LB, LB, LB, B, UB, UB, UB,
Set x, to true Guaranteed that
f I | ' J | ' J
Set x, to talse t, f,

—_—

Remark: This is the

Weight of algorithm proposed Weight of
undecided independently by undecided
clauses BENS'12 and vZ'11 clauses
satisfied by unsatisfied by
x;= true x; = True

| | | 1 |

| 1 C) 1
LB,; LB, LB, Bi-l UB; UB;, UB,;

(]

Algorithm:

« if t, < 0,%et x; to false

o if f, < 0,setx;to titue (B:-B,)+(B-B.,)=0
* else, set x; to true with)

probability # G f

Example

Initalize: Clause | Weight _
+ LB=0 . ;
+ UB=6 o :
St 1_ szXg 3
ep 1:

cty == (ALB+AUB) == (1+(-2)) = —~

 fi=>(ALB+AUB) == (2+0) =1

* Set x, to false

Example

Clase | Weight_
X1 2
X7 X5 1
Xy V X3 3

Step 2:
1 1

ct,==(ALB+AUB) =~ (1+0) ==

* fo=-(aLB+AUB)=2 B+ (-1) =1

* Set x, to true with probability 1/3 and to false
with probability 2/3

Example
Clause | Weight _
x4 2

X1V Xy 1
Xy V X3 3
Algorithm’s solution:
x1 = false
X, = true w.p. 1/3 and false w.p. 2/3
X3 = true

Expected weight of satisfied clauses: 5%

Relating Algorithm to Optimum

Let x;, x5, ..., X,, be an optimal truth assignment

Let OPT, = weight of clauses satisfied if setting
X1, ..., X; as the algorithm does, and x;,; =

E S

- X
xi_l_l’ ---’xn - xn

Key Lemma:

E[B;—B;_ 1| = E[OPT;_, — OPT}]

OPT

LBy By By OPT, UB,

Key Lemma:
E[B; —B;_1 | 2 E[OPT;_y — OPT;]

OPT, =B, =
weight of
ALG’s solution | | OPT

l |

I | | ‘ | I

LB, B}((B, opT, UB,
f f

Key Lemma:
Conclusion: expected weight of ALG’s solutionis

1 1 3
E[By] 2 Bo + (OPT — Bo) = 5 (OPT + Bo) 2 7 OPT

Relating Algorithm to Optimum

Weight of
undecided clauses
satisfied by x;=

true |

Weight of
undecided clauses
unsatisfied by x; =

| B
LB, LB, LB

Suppose x; = true

If algorithm sets x; to true,
* Bi—=Bi1 =t

° OPTl'_l — OPTL =0

If algorithm sets x; to false,
* Bi—=Bi_1 = i

true
i lBi /—A—\
I B
UB. UB. UB,,

Want to show:

Key Lemma:

E[B; — B;_;] = E[OPT;_; — OPT;]

¢ OPTl'_l — OPTl < LBL — LBi—l + (UBL — UBi—l)
= 2(B; — Bj—1) = 2¢t;

Relating Algorithm to Optimum

Want to show:

Know:
Key Lemma: If algorithm sets x; to true,
E|[B; —Bi—1] = E[OPT;—1 — OPT;] e B,—B, =t

OPTi—l - OPTl =0

If algorithm sets x; to false,
B; =B = J;
OPT;,_, — OPT; < 2t;

Case 1: f; < 0 (algorithm sets x; to true):
E[Bl — Bi—l] — ti >0 = E[OPTi_l — OPTL]

Case 2: t; < 0 (algorithm sets x; to false):
E[Bl — Bi—l] — fl > 0> Zti = E[OPTi_l — OPTL]

Relating Algorithm to Optimum

Want to show:

Know:
Key Lemma: If algorithm sets x; to true,
E|[B; —Bi—1] = E[OPT;—1 — OPT;] e B,—B, =t

OPTi_l—OPTi — O

Equal to alse,

(ti — fi)*+2¢:f;

t:

Case 3:t; = 0, f; = 0 (algorithm sets x; to tMp. ti/ti+fi):

i t; Lo 1
E[B; — Bi_4] = Lty s + /i L+f; tit+fs
1

_ t; -
E[OPT;_; — OPT;] < 0——+ 2t Ji

ti + f; ‘L4 G+

(2t:fi)

Question

Is there a stmple combinatorial deterministic
Ya-approximation algorithm?

Deterministic variant?

Greedily maximizing B, is not good enough:

X1 1

fl V X9
X2

fz ng

2+¢€
1

2+¢€

2+¢€

Optimal assignment sets
all variables to true
OPT = (n-1)(3+¢)

Greedily increasing B;
sets variables
Xq,-.-,Xn_q1 tofalse
GREEDY= (n-1)(2+¢)

A negative result

Poloczek (ESA 11): No deterministic “priority
algorithm” can be a % -approximation algorithm,
using scheme introduced by Borodin, Nielsen, and
Rackoff ‘03.

* Algorithm makes one pass over the variables and
sets them.

* Only looks at weights of clauses in which current
variable appears positively and negatively (not at
the other variables in such clauses).

e Restricted in information used to choose next
variable to set.

But...

It is possible...

... With a two-pass algorithm (Thanks to Ola
Svensson).

First pass: Set variables x; fractionally (i.e.
probability that x; true), so that E[W] >

= OPT.
Second pass: Use method of conditional

expectations to get deterministic solution of
value at least as much.

Buchbinder et al.’s approach
* Keep two bounds‘ expected kactional solution
— Lower bound LB =Vweight of clauses already satisfied

— Upper bound UB = weight of clauses not yet unsatisfied
expected
* Greedy can focus DE:WU'\"\ingS:

— maximize LB,

— maximize UB,
but either choice has bad examp|

expected

* Key idea: make choices to increase B = % (LB+UB)

As before

Let ¢; be (expected) increase in bound B;_; if we set x;
true; f; be (expected) increase in bound if we set x; false.

Algorithm:

Fori < 1ton

e ift; < 0,setx;to0
o iff;, < 0,setx;to1l

t.
* else, set x; to ﬁ
[[

Fori < 1ton
« FE[W|X;_{,x; < true] =

E[W|Xl-_1, X; < false], set x; true
* Else set x; false

Analysis

* Proof that after the first pass E[W] > Z OPT
is almost the same as before.

* Proof that final solution output has value at
least E[W] = Z OPT is via method of

conditional expectation.
* Algorithm can be implemented in linear time.

Experimental Analysis

* How well do these algorithms work on
structured instances?

* How do they compare to other types of
algorithms (e.g. local search)?

e Can we use the randomization to our
advantage?

The Instances

* From SAT and MAX SAT competitions in 2014 and 2015,
all unweighted:

— Industrial/applications: formal verification, crypto attacks,
etc (300 + 55 instances)

— Crafted: Max cut, graph isomorphism, etc (300 + 402
instances)

— Random: With various ratios of clauses/variables (225 +
702 instances)

* Sizes:
— Average for industrial: .5M variables in 2M clauses

— Largest: 14M in 53M clauses
— Larger in SAT instances than MAX SAT

The Measure

* Rather than approximation ratio, we use the
totality ratio, ratio of satisfied clauses to the
number of clauses in the input.

Greedy Algorithms

SAT/Industrial instances: Johnson’s algorithm (JA) versus
Randomized Greedy (RG) versus the 2-pass algorithm
(2Pass).

100

¢ 0

98

96 *RG
e JA
94 A 2Pass

% satisfied

92

90 . .
0.0 0.5 1.0 1.5

averagetime (s)

Local Search

We compared the greedy algorithms versus a
number of local search algorithms studied by
Pankratov and Borodin (SAT 2010).

 WalkSAT: Selman, Kautz, Cohen (1993), Kautz
(2014)

 Non-Oblivious Local Search (NOLS): Khanna,
Motwani, Sudan, Vazirani (1998)

e Simulated Annealing (SA): Spears (1993)

% satisfied

100

98

96

94

92

90

o @

A 4

20

40 60 80

average time (s)

100

120

® RG

@ JA

A 2Pass

B WalkSat

A 2Pass+NOLS
& NOLS+TS

® SA

A Hybrid Algorithm

Adding the last 10 iterations of simulated annealing on
top of 2-Pass worked really well, not that much slower.
The last 10 iterations by themselves was slightly faster,
only slightly worse.

100.0

99.8 ¢ ®
-
% 99.6 A2Pass
'-% A ¢ 2Pass+SSA
w994 ® SA
X

99.2

99.0

0 20 40 60 80 100 120

average time (s)

Randomization

* Suppose we randomize over the variable
orderings? Costello, Shapira, and Tetali (SODA
11) show this improves the worst-case
performance of Johnson’s algorithm.

* Forindustrial instances, this makes the
performance of the greedy algorithms worse:

Johnson’s alg from 98% to 95.8%, RG from
95.7% to 92.8%.

Randomization

 What about multiple trials of RG (10x)?

* [ncreases average fraction of satisfied clause
by only 0.07%.

Conclusion

 We show this two-passidea works for other
problems as well (e.g. deterministic Y-

approximation algorithm for MAX DICUT, MAX
NAE SAT).

* Can we characterize the problems for which it
does work?

Conclusion

* More broadly, are there other places in which we

can reduce the computation needed for
approximation algorithms and make them

practical?

— E.g. Trevisan 13/Soto 15 give a .614-approximation
algorithm for Max Cut using a spectral algorithm.

— Can we beat % using a spectral algorithm?

* For just MAX 2SAT?

 We can get .817 for balanced instances (Paul, Poloczek, W
LATIN 16)

* Curiously, the algorithm seems to beat the GW SDP
algorithm on averagein practice (Paul et al.)

Thanks for your time and attention.

