
A	Simple	¾-Approximation	
Algorithm	for	MAX	SAT

David	P.	Williamson

Joint	work	with	Matthias	Poloczek	(Cornell),	Georg	Schnitger	
(Frankfurt),	and	Anke	van	Zuylen	(William	&	Mary)



Maximum	Satisfiability

• Input:
𝑛 Boolean	variables	𝑥1, … , 𝑥𝑛
𝑚 clauses	𝐶1, …	, 𝐶)	with	weights	𝑤+ ≥ 0
– each	clause	is	a	disjunction	of	literals,	
e.g.	𝐶1	 = 𝑥₁	 ∨ 	𝑥₂	 ∨ 	𝑥̅₃

• Goal:	truth	assignment	to	the	variables	that	
maximizes	the	weight	of	the	satisfied	clauses



Approximation	Algorithms

• An	α-approximation	algorithm	runs	in	
polynomial	time	and	returns	a	solution	of	at	
least	α times	the	optimal.

• For	a	randomized	algorithm,	we	ask	that	the	
expected	value	is	at	least	α times	the	optimal.



A	½-approximation	algorithm

• Set	each	𝑥4 to	true	with	probability	½.
• Then	if	𝑙+ is	the	number	of	literals	in	clause	𝑗



What	about	a	deterministic	algorithm?

• Use	the	method	of	conditional	 expectations	(Erdős	
and	Selfridge	‘73,	Spencer	‘87)

• If	𝐸 𝑊 𝑥9 ← 𝑡𝑟𝑢𝑒 ≥ 𝐸 𝑊 𝑥9 ← 𝑓𝑎𝑙𝑠𝑒 then	set	
𝑥9 true,	otherwise	false.

• Similarly,	if	𝑋4C9 is	event	of	how	first	𝑖 −
1	variables	are	set,	then	if 𝐸 𝑊 𝑋4C9, 𝑥4 ← 𝑡𝑟𝑢𝑒 ≥
𝐸 𝑊 𝑋4C9,	𝑥4 ← 𝑓𝑎𝑙𝑠𝑒 ,	set	𝑥4 true.

• Show	inductively	that	𝐸[𝑊|𝑋4] ≥ 𝐸 𝑊 ≥ 9
I
OPT.



An	LP	relaxation



Nonlinear	randomized	rounding

(Goemans,	W	94)	Pick	any	function	𝑓such	that	1 − 4CK ≤ 𝑓 𝑥 ≤ 4KC9.	Set	𝑥4
true	with	probability	𝑓(𝑦4∗),	where	𝑦∗ is	an	optimal	LP	solution.



Analysis



Integrality	gap

The	result	is	tight	since	LP	solution	𝑧9 = 𝑧I = 𝑧R = 𝑧S = 1 and	𝑦9 = 𝑦I =
9
I

feasible	for	instance	above,	but	OPT	=	3.

Chan,	Lee,	Raghavendra,	Steurer (STOC	13)	show	no	superpolynomially sized	
LP	can	give	a	better	integrality	gap.



Current	status
• NP-hard	to	approximate	better	than	0.875	(Håstad ’01)

• Combinatorial	approximation	algorithms
– Johnson’s	algorithm	(1974):	Simple	½-approximation	algorithm	
(Greedy	version	of	the	randomized	algorithm)

– Improved	analysis	of	Johnson’s	algorithm:	2/3-approx.	
guarantee	[Chen,	Friesen,	Zheng	’99,		Engebretsen ’04]

– Randomizing	variable	order	improves	guarantee	slightly	
[Costello,	Shapira,	Tetali SODA	11]

• Algorithms	using	Linear	or	SemidefiniteProgramming
– Yannakakis ’94,	Goemans,	W	’94:	

¾-approximation	algorithms
– Best	guarantee	0.7969	[Avidor,	Berkovitch,	Zwick ’05]

Question	[W	’98]:	Is it possible to obtain a 3/4-
approximation algorithm without solving a linear 
program?



(Selected)	results
• Poloczek,	Schnitger	(SODA	11):	
– “randomized	Johnson”	– combinatorial	¾-
approximation	algorithm

• Van	Zuylen	(WAOA	11):	
– Simplification	of	“randomized	Johnson”	probabilities	
and	analysis

• Buchbinder,	Feldman,	Naor,	and	Schwartz	(FOCS	
12):	
– Another	¾-approximation	algorithm	for	MAX	SAT	as	a	
special	case	of	submodular function	maximization

– Can	be	shown	that		their	MAX	SAT	alg is	equivalent	to	
van	Zuylen’s.



(Selected)	results

• Poloczek,	Schnitger ’11
• Van	Zuylen ’11
• Buchbinder,	Feldman,	Naor and	Schwartz	’12

Common	properties:

• iteratively	set	the	variables	in	an	“online”	fashion,	

• the	probability	of	setting	𝑥𝑖 to	true	depends	on	
clauses	containing	𝑥4 or	𝑥̅4 that	are	still	undecided.



Today

• Give	“textbook”	version	of	Buchbinder et	al.’s	
algorithm	with	an	even	simpler	analysis	
(Poloczek,	van	Zuylen,	W,	LATIN	14)

• Give	a	simple	deterministic	version	of	the	
algorithm	(Poloczek,	Schnitger,	van	Zuylen,	W,	
manuscript)

• Give	an	experimental	analysis	that	shows	that	the	
algorithm	works	very	well	in	practice	(Poloczek,	
W,	SEA	2016)



Buchbinder et	al.’s	approach
• Keep	two	bounds	on	the	solution

– Lower	bound	LB =	weight	of	clauses	already	satisfied
– Upper	bound	UB	=	weight	of	clauses	not	yet	unsatisfied

• Greedy	can	focus	on	two	things:	
– maximize	LB,	
– maximize	UB,

but	either	choice	has	bad	examples…
E.g.	 x₁	∨ x₂	 (wt 1+ε),	 x̅₁	(wt 1)

x₁	∨ x₂ (wt 1+ε),		x̅₁		(wt ε),		x̅₂	(wt 1)

• Key	idea:	make	choices	to	increase	B	= ½	(LB+UB)



LB0
(=	0)

UB0
(=∑wj)

B0=	½(LB0+UB0)



LB0 UB0B0=	½(LB0+UB0)

Set	𝑥1 to	true

Weight of 
undecided 
clauses 
satisfied by 
𝑥1= true

LB1 UB1

Weight of 
undecided 
clauses 
unsatisfied by 
𝑥1= true



LB0 UB0B0

Set	𝑥1 to	true

LB1 UB1

B1

Weight of 
undecided 
clauses 
satisfied by 
𝑥1= true

Weight of 
undecided 
clauses 
unsatisfied by 
𝑥1= true



LB0 UB0

Set	𝑥1 to	true
or

Set	𝑥1 to	false

LB1 UB1LB1 UB1

B1

B0

Weight of 
undecided 
clauses 
satisfied by 
𝑥1= true

Weight of 
undecided 
clauses 
unsatisfied by 
𝑥1= true



LB0 UB0

Set	𝑥1 to	true
or

Set	𝑥1 to	false

LB1 UB1LB1 UB1

B1B1

Guaranteed	that
(B1-B0)+(B1-B0)	≥ 0

B0

t1 f1

Weight of 
undecided 
clauses 
satisfied by 
𝑥1= true

Weight of 
undecided 
clauses 
unsatisfied by 
𝑥1= true



(Bi-Bi-1)+(Bi-Bi-1)	≥ 0

ti fi

Algorithm:	
• if	𝑡𝑖 < 	0,	set	𝑥𝑖 to	false
• if	𝑓𝑖	 < 	0,	set	𝑥𝑖 to	true
• else,	set	𝑥𝑖	to	true	with	
probability	 U4

U4VW4

Remark:	This	is	the	
algorithm	proposed	
independently	 by	
BFNS’12	and	vZ’11	

LBi-1 UBi-1LBi UBiLBi UBi

BiBi

Bi-1

Weight of 
undecided 
clauses 
satisfied by 
𝑥𝑖= true

Weight of 
undecided 
clauses 
unsatisfied by 
𝑥𝑖 = true



Example

Initalize:
• LB	=	0
• UB	=	6
Step	1:

• 𝑡1 =
9
I
	 △ 𝐿𝐵 +△ 𝑈𝐵 = 9

I
	 1 + (−2) = − 9

I

• 𝑓1 =
9
I
	 △ 𝐿𝐵 +△ 𝑈𝐵 = 9

I
	 2 + 0 = 1

• Set	x1 to	false

Clause Weight
𝑥̅9 2

𝑥9 ∨ 𝑥I 1
𝑥̅I ∨ 𝑥R 3



Example

Step	2:

• 𝑡2 =
9
I
	 △ 𝐿𝐵 +△ 𝑈𝐵 = 9

I
	 1 + 0 = 9

I

• 𝑓I =
9
I
	 △ 𝐿𝐵 +△ 𝑈𝐵 = 9

I
	 3 + (−1) = 1

• Set	x2 to	true	with	probability	1/3	and	to	false	
with	probability	2/3	

Clause Weight
𝑥̅9 2

𝑥9 ∨ 𝑥I 1
𝑥̅I ∨ 𝑥R 3



Example

Algorithm’s	solution:
𝑥9 = false
𝑥I = true	w.p.	1/3	and	false	w.p.	2/3
𝑥R = true

Expected	weight	of	satisfied	clauses:	59
R

Clause Weight
𝑥̅9 2

𝑥9 ∨ 𝑥I 1
𝑥̅I ∨ 𝑥R 3



Relating	Algorithm	to	Optimum

Let	𝑥9∗, 𝑥I∗, … , 𝑥_∗ be	an	optimal	truth	assignment

Let	𝑂𝑃𝑇𝑖 =	weight	of	clauses	satisfied	if	setting	
𝑥9, … , 𝑥4	as	the	algorithm	does,	and	𝑥4V9 =
𝑥4V9∗ , … , 𝑥_ = 𝑥_∗

Key	Lemma:	
𝐸 𝐵4 − 𝐵4C9	 ≥ 𝐸[𝑂𝑃𝑇4C9 − 𝑂𝑃𝑇4]



Let	𝑥9∗, 𝑥I∗, … , 𝑥_∗ an	optimal	truth	assignment

Let	𝑂𝑃𝑇𝑖 =	weight	of	clauses	satisfied	if	setting	
𝑥9, … , 𝑥_as	the	algorithm	does,	and	𝑥4V9 =
𝑥4V9∗ , … , 𝑥_ = 𝑥_∗

Key	Lemma:	
𝐸 𝐵4 − 𝐵4C9	 ≥ 𝐸[𝑂𝑃𝑇4C9 − 𝑂𝑃𝑇4]

LB0 B0 UB0B1

OPT

OPT1



Let		an	optimal	truth	assignment

Let	 =	weight	of	clauses	satisfied	if	setting	as	the	
algorithm	does,	and	

Key	Lemma:	

LB0 B0 UB0B1 OPT1

OPTn =	Bn =	
weight	of	
ALG’s	solution

B0 ≥	½	OPT ≥	½	(OPT-B0)

OPT

Conclusion:		expected	weight	of	ALG’s		solution	is	

𝐸 𝐵_ ≥ 𝐵c +
1
2 𝑂𝑃𝑇 − 𝐵c =

1
2 𝑂𝑃𝑇 + 𝐵c ≥

3
4𝑂𝑃𝑇



Relating	Algorithm	to	Optimum

LBi-1 UBi-1LBi UBiLBi UBi

BiBi

Bi-1

Suppose	𝑥4∗=	true
If	algorithm	sets	𝑥4 to	true,	
• 𝐵4 − 𝐵4C9 = 	 𝑡4
• 𝑂𝑃𝑇4C9 − 𝑂𝑃𝑇4 = 0
If	algorithm	sets	𝑥4 to	false,
• 𝐵4 − 𝐵4C9 = 	 𝑓4
• 𝑂𝑃𝑇4C9 − 𝑂𝑃𝑇4 ≤ 𝐿𝐵4 − 𝐿𝐵4C9 + 𝑈𝐵4 − 𝑈𝐵4C9

= 2 𝐵4 − 𝐵4C9 = 2𝑡4

Want	to	show:
Key	Lemma:	
𝐸 𝐵4 − 𝐵4C9	 ≥ 𝐸[𝑂𝑃𝑇4C9 − 𝑂𝑃𝑇4]

Weight of 
undecided clauses 
satisfied by 𝑥𝑖= 
true

Weight of 
undecided clauses 
unsatisfied by 𝑥𝑖 = 
true



Relating	Algorithm	to	Optimum

Case	1:	𝑓4 < 0 (algorithm	sets	𝑥𝑖 to	true):	
𝐸 𝐵4 − 𝐵4C9 = 𝑡4 > 0 = 𝐸 𝑂𝑃𝑇4C9 − 𝑂𝑃𝑇4

Case	2:	𝑡4 < 0 (algorithm	sets	𝑥𝑖 to	false):	
𝐸 𝐵4 − 𝐵4C9 = 	 𝑓4 > 0 > 2𝑡4 ≥ 𝐸 𝑂𝑃𝑇4C9 − 𝑂𝑃𝑇4

Know:
If	algorithm	sets	𝑥4 to	true,	
• 𝐵4 − 𝐵4C9 = 	 𝑡4
• 𝑂𝑃𝑇4C9 − 𝑂𝑃𝑇4 = 0
If	algorithm	sets	𝑥4 to	false,
• 𝐵4 − 𝐵4C9 = 	 𝑓4
• 𝑂𝑃𝑇4C9 − 𝑂𝑃𝑇4 ≤ 2𝑡4

Want	to	show:
Key	Lemma:	
𝐸 𝐵4 − 𝐵4C9	 ≥ 𝐸[𝑂𝑃𝑇4C9 − 𝑂𝑃𝑇4]



Know:
If	algorithm	sets	𝑥4 to	true,	
• 𝐵4 − 𝐵4C9 = 	 𝑡4
• 𝑂𝑃𝑇4C9 − 𝑂𝑃𝑇4 = 0
If	algorithm	sets	𝑥4 to	false,
• 𝐵4 − 𝐵4C9 = 	 𝑓4
• 𝑂𝑃𝑇4C9 − 𝑂𝑃𝑇4 ≤ 2𝑡4

Relating	Algorithm	to	Optimum

Case	3:	𝑡4 ≥ 0,	𝑓4 ≥ 0 (algorithm	sets	𝑥𝑖 to	true	w.p.	
Ue
UeVWef ):

𝐸 𝐵4 − 𝐵4C9 = 	𝑡4
Ue

UeVWe
+ 𝑓4

We
UeVWe

= 9
UeVWe

(𝑡42 + 𝑓42)

𝐸 𝑂𝑃𝑇4C9 − 𝑂𝑃𝑇4 ≤ 0
𝑡4

𝑡4 + 𝑓4
+ 2𝑡4

𝑓4
𝑡4 + 𝑓4

=
1

𝑡4 + 𝑓4
(2𝑡4𝑓4)

Want	to	show:
Key	Lemma:	
𝐸 𝐵4 − 𝐵4C9	 ≥ 𝐸[𝑂𝑃𝑇4C9 − 𝑂𝑃𝑇4]

Equal	to
(𝑡4 − 𝑓4)2+2𝑡4𝑓4



Question

Is there a simple combinatorial deterministic
¾-approximation algorithm?



Clause Weight
𝑥9 1

𝑥̅9 ∨ 𝑥I 2+ε
𝑥I 1

𝑥̅I ∨ 𝑥R 2+ε
…..
𝑥_C9 1

𝑥̅_C9 ∨ 𝑥_ 2+ε

Optimal	assignment	sets	
all	variables	to	true
OPT	=	(n-1)(3+ε)

Deterministic	variant?
Greedily	maximizing	Bi is	not	good	enough:

Greedily	increasing	Bi	
sets	variables	
𝑥9,… ,𝑥_C9	to	false
GREEDY=	(n-1)(2+ε)



A	negative	result
Poloczek (ESA	11):	No	deterministic	“priority	
algorithm”	can	be	a	¾	-approximation	algorithm,	
using	scheme	introduced	by	Borodin,	Nielsen,	and	
Rackoff ‘03.
• Algorithm	makes	one	pass	over	the	variables	and	
sets	them.

• Only	looks	at	weights	of	clauses	in	which	current	
variable	appears	positively	and	negatively	(not	at	
the	other	variables	in	such	clauses).

• Restricted	in	information	used	to	choose	next	
variable	to	set.



But…

• It	is	possible…	
• …	with	a	two-pass	algorithm	(Thanks	to	Ola	
Svensson).

• First	pass:	Set	variables	𝑥4 fractionally	(i.e.	
probability	that	𝑥4 true),	so	that	𝐸 𝑊 ≥
R
S
	𝑂𝑃𝑇.

• Second	pass:	Use	method	of	conditional	
expectations	to	get	deterministic	solution	of	
value	at	least	as	much.



Buchbinder et	al.’s	approach
• Keep	two	bounds	on	the	fractional	 solution
– Lower	bound	LB =		weight	of	clauses	already	satisfied
– Upper	bound	UB	=		weight	of	clauses	not	yet	unsatisfied

• Greedy	can	focus	on	two	things:	
– maximize	LB,	
– maximize	UB,
but	either	choice	has	bad	examples…

• Key	idea:	make	choices	to	increase	B	= ½	(LB+UB)

expected

expected

expected



As	before
Let	𝑡4 be	(expected)	increase	in	bound	𝐵4C9 if	we	set	𝑥4
true;	𝑓4 be	(expected)	increase	in	bound	if	we	set	𝑥4 false.

Algorithm:	
For	𝑖 ← 1	to	𝑛
• if	𝑡𝑖 < 	0,	set 𝑥4 to	0
• if	𝑓𝑖	 < 	0,	set	𝑥4	to	1
• else,	set	𝑥4	to	

U4
U4VW4

For	𝑖 ← 1	to	𝑛
• If	𝐸 𝑊 𝑋4C9, 𝑥4 ← 𝑡𝑟𝑢𝑒 	≥
𝐸 𝑊 𝑋4C9,	𝑥4 ← 𝑓𝑎𝑙𝑠𝑒 ,	set	𝑥4 true

• Else	set	𝑥4 false



Analysis

• Proof	that	after	the	first	pass	𝐸 𝑊 ≥ R
S
	𝑂𝑃𝑇

is	almost	the	same	as	before.
• Proof	that	final	solution	output	has	value	at	
least	𝐸 𝑊 ≥ R

S
	𝑂𝑃𝑇 is	via	method	of	

conditional	expectation.
• Algorithm	can	be	implemented	in	linear	time.



Experimental	Analysis

• How	well	do	these	algorithms	work	on	
structured	instances?

• How	do	they	compare	to	other	types	of	
algorithms	(e.g.	local	search)?

• Can	we	use	the	randomization	to	our	
advantage?



The	Instances
• From	SAT	and	MAX	SAT	competitions	in	2014	and	2015,	
all	unweighted:
– Industrial/applications:	formal	verification,	crypto	attacks,	
etc (300	+	55	instances)

– Crafted:	Max	cut,	graph	isomorphism,	etc (300	+	402	
instances)

– Random:	With	various	ratios	of	clauses/variables	(225	+	
702	instances)

• Sizes:
– Average	for	industrial:	.5M	variables	in	2M	clauses
– Largest:	14M	in	53M	clauses
– Larger	in	SAT	instances	than	MAX	SAT



The	Measure

• Rather	than	approximation	ratio,	we	use	the	
totality	ratio,	ratio	of	satisfied	clauses	to	the	
number	of	clauses	in	the	input.



Greedy	Algorithms
SAT/Industrial	instances:	Johnson’s	algorithm	(JA)	versus	
Randomized	Greedy	(RG)	versus	the	2-pass	algorithm	
(2Pass).



Local	Search	

We	compared	the	greedy	algorithms	versus	a	
number	of	local	search	algorithms	studied	by	
Pankratov and	Borodin	(SAT	2010).
• WalkSAT:	Selman,	Kautz,	Cohen	(1993),	Kautz
(2014)

• Non-Oblivious	Local	Search	(NOLS):	Khanna,	
Motwani,	Sudan,	Vazirani (1998)

• Simulated	Annealing	(SA):	Spears	(1993)





A	Hybrid	Algorithm
Adding	the	last	10	iterations	of	simulated	annealing	on	
top	of	2-Pass	worked	really	well,	not	that	much	slower.		
The	last	10	iterations	by	themselves	was	slightly	faster,	
only	slightly	worse.



Randomization

• Suppose	we	randomize	over	the	variable	
orderings?		Costello,	Shapira,	and	Tetali (SODA	
11)	show	this	improves	the	worst-case	
performance	of	Johnson’s	algorithm.

• For	industrial	instances,	this	makes	the	
performance	of	the	greedy	algorithms	worse:	
Johnson’s	alg from	98%	to	95.8%,	RG	from	
95.7%	to	92.8%.



Randomization

• What	about	multiple	trials	of	RG	(10x)?
• Increases	average	fraction	of	satisfied	clause	
by	only	0.07%.



Conclusion

• We	show	this	two-pass	idea	works	for	other	
problems	as	well	(e.g.	deterministic	½-
approximation	algorithm	for	MAX	DICUT,	MAX	
NAE	SAT).

• Can	we	characterize	the	problems	for	which	it	
does	work?



Conclusion

• More	broadly,	are	there	other	places	in	which	we	
can	reduce	the	computation	needed	for	
approximation	algorithms	and	make	them	
practical?
– E.g.	Trevisan 13/Soto	15	give	a	.614-approximation	
algorithm	for	Max	Cut	using	a	spectral	algorithm.

– Can	we	beat	¾	using	a	spectral	algorithm?		
• For	just	MAX	2SAT?
• We	can	get	.817	for	balanced	instances	(Paul,	Poloczek,	W	
LATIN	16)

• Curiously,	the	algorithm	seems	to	beat	the	GW	SDP	
algorithm	on	average	in	practice	(Paul	et	al.)



Thanks	for	your	time	and	attention.


