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Greedy algorithms 

“Greed, for lack of a better word, is good. Greed is 
right. Greed works.” – Gordon Gekko, Wall Street 
“Greedy algorithms work.” – Alan Hoffman, IBM 



Another reason 

• When I interviewed at Watson, half of my talk was 
about maximum satisfiability, the other half about 
the max cut SDP result. 

• I thought, “Oh no, I have to talk about 

– Hardness of approximation in front of Madhu Sudan, 

– Randomized rounding in front of Prabhakar Raghavan, 

– And eigenvalue bounds in front of Alan Hoffman.” 

• Today I revisit the first part of that talk. 



Maximum Satisfiability 

• Input:  

 𝑛 Boolean variables 𝑥1, … , 𝑥𝑛 

 𝑚 clauses 𝐶1, … , 𝐶𝑚 with weights 𝑤𝑗  0 

– each clause is a disjunction of literals,  

 e.g. 𝐶1 =  𝑥1  𝑥2  𝑥 3  

 

• Goal: truth assignment to the variables that 
maximizes the weight of the satisfied clauses 

     



Approximation Algorithms 

• An α-approximation algorithm runs in 
polynomial time and returns a solution of at 
least α times the optimal. 

 

• For a randomized algorithm, we ask that the 
expected value is at least α times the optimal. 

 



A ½-approximation algorithm 

• Set each 𝑥𝑖  to true with probability ½. 

• Then if 𝑙𝑗  is the number of literals in clause 𝑗 

 

 



What about a deterministic algorithm? 

• Use the method of conditional expectations (Erdős 
and Selfridge ‘73, Spencer ‘87) 

• If 𝐸 𝑊 𝑥1 ← 𝑡𝑟𝑢𝑒 ≥ 𝐸 𝑊 𝑥1 ← 𝑓𝑎𝑙𝑠𝑒  then set 
𝑥1 true, otherwise false. 

• Similarly, if 𝑋𝑖−1 is event of how first 𝑖 −
1 variables are set, then if 𝐸 𝑊 𝑋𝑖−1, 𝑥𝑖← 𝑡𝑟𝑢𝑒 ≥
𝐸 𝑊 𝑋𝑖−1, 𝑥𝑖 ← 𝑓𝑎𝑙𝑠𝑒 , set 𝑥𝑖  true. 

• Show inductively that 𝐸[𝑊|𝑋𝑖] ≥ 𝐸 𝑊 ≥
1

2
 OPT. 



An LP relaxation 



Randomized rounding 

Pick any function 𝑓such that 1 − 4−𝑥 ≤ 𝑓 𝑥 ≤ 4𝑥−1. Set 𝑥𝑖 true with probability 
𝑓(𝑦𝑖

∗), where 𝑦∗ is an optimal LP solution. 



Analysis 



Integrality gap 

The result is tight since LP solution 𝑧1 = 𝑧2 = 𝑧3 = 𝑧4 = 1 

and 𝑦1 = 𝑦2 =
1

2
 feasible for instance above, but OPT = 3. 



Current status 
• NP-hard to approximate better than 0.875 (Håstad ’01) 

 
• Combinatorial approximation algorithms 

– Johnson’s algorithm (1974): Simple ½-approximation algorithm 
(Greedy version of the randomized algorithm) 

– Improved analysis of Johnson’s algorithm: 2/3-approx. 
guarantee [Chen-Friesen-Zheng ’99,  Engebretsen ’04] 

– Randomizing variable order improves guarantee slightly 
[Costello-Shapira-Tetali ’11] 

 
• Algorithms using Linear or Semidefinite Programming 

– Yannakakis ’94, Goemans-W ’94:  
  ¾-approximation algorithms 
– Best guarantee 0.7969 [Avidor-Berkovitch-Zwick ’05] 

 
 

 

 
 

  

Question [W ’98]: Is it possible to obtain a 3/4-approximation 
algorithm without solving a linear program? 



(Selected) recent results 

• Poloczek-Schnitger ’11:  
– “randomized Johnson” – combinatorial ¾-

approximation algorithm 

• Van Zuylen ’11:  
– Simplification of “randomized Johnson” probabilities 

and analysis 
– Derandomization using Linear Programming 

• Buchbinder, Feldman, Naor, and Schwartz ’12:  
– Another ¾-approximation algorithm for MAX SAT as a 

special case of submodular function maximization 
– We show MAX SAT alg is equivalent to van Zuylen ‘11. 

 



(Selected) recent results 

• Poloczek-Schnitger’11 

• Van Zuylen ’11 

• Buchbinder, Feldman, Naor and Schwartz ’12 

Common properties: 
 
• iteratively set the variables in an “online” fashion,  

 
• the probability of setting 𝑥𝑖 to true depends on 

clauses containing 𝑥𝑖 or 𝑥 𝑖 that are still undecided. 



Today 

• Give “textbook” version of Buchbinder et al.’s 
algorithm with an even simpler analysis 



Buchbinder et al.’s approach 

• Keep two bounds on the solution 
– Lower bound LB = weight of clauses already satisfied 

– Upper bound UB = weight of clauses not yet unsatisfied 

 

• Greedy can focus on two things:  
– maximize LB,  

– maximize UB, 

    but either choice has bad examples… 
 

• Key idea: make choices to increase B = ½ (LB+UB) 
 



LB0 

(= 0) 
   UB0 

(=∑wj) 
B0= ½(LB0+UB0) 



   

LB0 UB0 B0= ½(LB0+UB0) 

Set 𝑥1 to true 

Weight of 
undecided 
clauses 
satisfied by 
𝑥1= true 

LB1 UB1 

Weight of 
undecided 
clauses 
unsatisfied by 
𝑥1= true 



   

LB0 UB0 B0 

Set 𝑥1 to true 

LB1 UB1 

B1 

Weight of 
undecided 
clauses 
satisfied by 
𝑥1= true 

Weight of 
undecided 
clauses 
unsatisfied by 
𝑥1= true 



LB0 UB0 

Set 𝑥1 to true 
 or 
Set 𝑥1 to false 

LB1 UB1 LB1 UB1 

B1 

B0 

Weight of 
undecided 
clauses 
satisfied by 
𝑥1= true 

Weight of 
undecided 
clauses 
unsatisfied by 
𝑥1= true 



  

LB0 UB0 

Set 𝑥1 to true 
 or 
Set 𝑥1 to false 

LB1 UB1 LB1 UB1 

  B1 B1 

Guaranteed that 
(B1-B0)+(B1-B0) ≥ 0 

B0 

t1 f1 

Weight of 
undecided 
clauses 
satisfied by 
𝑥1= true 

Weight of 
undecided 
clauses 
unsatisfied by 
𝑥1= true 



 
(Bi-Bi-1)+(Bi-Bi-1) ≥ 0 

ti fi 

Algorithm:  
• if 𝑡𝑖 <  0, set 𝑥𝑖 to false 
• if 𝑓𝑖 <  0, set 𝑥𝑖 to true 
• else, set 𝑥𝑖 to true with 

probability 
𝑡
𝑖

𝑡
𝑖
+𝑓

𝑖

 

Remark: This is the 
algorithm proposed 

independently by 
BFNS’12 and vZ’11  

LBi-1 UBi-1 LBi 
UBi LBi UBi 

  Bi Bi 

Bi-1 

Weight of 
undecided 
clauses 
satisfied by 
𝑥𝑖= true 

Weight of 
undecided 
clauses 
unsatisfied by 
𝑥𝑖 = true 



Example 

Initalize: 

• LB = 0 

• UB = 6 

Step 1: 

• 𝑡1 =
1

2
 △ 𝐿𝐵 +△ 𝑈𝐵 =

1

2
 1 + (−2) = −

1

2
 

• 𝑓1 =
1

2
 △ 𝐿𝐵 +△ 𝑈𝐵 =

1

2
 2 + 0 = 1 

• Set x1 to false 

 

Clause Weight 

𝑥 1 2 

𝑥1 ∨ 𝑥2 1 

𝑥 2 ∨ 𝑥3 3 



Example 

 

 

 

Step 2: 

• 𝑡2 =
1

2
 △ 𝐿𝐵 +△ 𝑈𝐵 =

1

2
 1 + 0 =

1

2
 

• 𝑓2 =
1

2
 △ 𝐿𝐵 +△ 𝑈𝐵 =

1

2
 3 + (−1) = 1 

• Set x2 to true with probability 1/3 and to false 
with probability 2/3  

Clause Weight 

𝑥 1 2 

𝑥1 ∨ 𝑥2 1 

𝑥 2 ∨ 𝑥3 3 



Example 

 
 
 
 
Algorithm’s solution: 
 𝑥1 = false 
 𝑥2 = true w.p. 1/3 and false w.p. 2/3 
 𝑥3 = true 

Expected weight of satisfied clauses: 5
1

3
 

 

Clause Weight 

𝑥 1 2 

𝑥1 ∨ 𝑥2 1 

𝑥 2 ∨ 𝑥3 3 



Different Languages 

• Bill, Baruch, and I would say: 

 
Let 𝐺 be a graph... 

 

• Alan would say: 

 
Let 𝐴 be a matrix... 

 

And we would be talking about the same thing! 



Relating Algorithm to Optimum 

Let 𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗  be an optimal truth assignment 

 

Let 𝑂𝑃𝑇𝑖 = weight of clauses satisfied if setting 
𝑥1, … , 𝑥𝑖  as the algorithm does, and 𝑥𝑖+1 =
𝑥𝑖+1
∗ , … , 𝑥𝑛 = 𝑥𝑛

∗  

Key Lemma:  
𝐸 𝐵𝑖 − 𝐵𝑖−1 ≥ 𝐸[𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖] 



Let 𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗  an optimal truth assignment 

 

Let 𝑂𝑃𝑇𝑖 = weight of clauses satisfied if setting 
𝑥1, … , 𝑥𝑛as the algorithm does, and 𝑥𝑖+1 =
𝑥𝑖+1
∗ , … , 𝑥𝑛 = 𝑥𝑛

∗  

 

Key Lemma:  
𝐸 𝐵𝑖 − 𝐵𝑖−1 ≥ 𝐸[𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖] 

LB0 B0 UB0 B1 

OPT 

OPT1 



Let  an optimal truth assignment 

 

Let  = weight of clauses satisfied if setting as the 
algorithm does, and  

 

Key Lemma:  

 

LB0 B0 UB0 B1 OPT1 

OPTn = Bn = 
weight of 
ALG’s solution 

B0 ≥ ½ OPT 
 

≥ ½ (OPT-B0) 
 

OPT 

Conclusion:  expected weight of ALG’s  solution is  

𝐸 𝐵𝑛 ≥ 𝐵0 +
1

2
𝑂𝑃𝑇 − 𝐵0 =

1

2
𝑂𝑃𝑇 + 𝐵0 ≥

3

4
𝑂𝑃𝑇 



Relating Algorithm to Optimum 

LBi-1 UBi-1 LBi 
UBi LBi UBi 

  Bi Bi 

Bi-1 

Suppose 𝑥𝑖
∗= true 

If algorithm sets 𝑥𝑖  to true,  
• 𝐵𝑖 − 𝐵𝑖−1 = 𝑡𝑖 
• 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖 = 0 
If algorithm sets 𝑥𝑖  to false, 
• 𝐵𝑖 − 𝐵𝑖−1 = 𝑓𝑖 
• 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖 ≤ 𝐿𝐵𝑖 − 𝐿𝐵𝑖−1 + 𝑈𝐵𝑖 − 𝑈𝐵𝑖−1  

= 2 𝐵𝑖 − 𝐵𝑖−1 = 2𝑡𝑖 

Want to show: 

Key Lemma:  
𝐸 𝐵𝑖 − 𝐵𝑖−1 ≥ 𝐸[𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖] 

Weight of 
undecided clauses 
satisfied by 𝑥𝑖= 
true 

Weight of 
undecided clauses 
unsatisfied by 𝑥𝑖 = 
true 



Relating Algorithm to Optimum 

Case 1: 𝑓𝑖 < 0 (algorithm sets 𝑥𝑖 to true):  
𝐸 𝐵𝑖 − 𝐵𝑖−1 = 𝑡𝑖 > 0 = 𝐸 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖  

 
Case 2: 𝑡𝑖 < 0 (algorithm sets 𝑥𝑖 to false):  

𝐸 𝐵𝑖 − 𝐵𝑖−1 = 𝑓𝑖 > 0 > 2𝑡𝑖 ≥ 𝐸 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖  
  

Know: 
If algorithm sets 𝑥𝑖 to true,  
• 𝐵𝑖 − 𝐵𝑖−1 =  𝑡𝑖 
• 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖 = 0 
If algorithm sets 𝑥𝑖 to false, 
• 𝐵𝑖 − 𝐵𝑖−1 =  𝑓𝑖 
• 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖 ≤ 2𝑡𝑖  
 

Want to show: 

Key Lemma:  
𝐸 𝐵𝑖 − 𝐵𝑖−1 ≥ 𝐸[𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖] 



Know: 
If algorithm sets 𝑥𝑖 to true,  
• 𝐵𝑖 − 𝐵𝑖−1 =  𝑡𝑖 
• 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖 = 0 
If algorithm sets 𝑥𝑖 to false, 
• 𝐵𝑖 − 𝐵𝑖−1 =  𝑓𝑖 
• 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖 ≤ 2𝑡𝑖  
 

Relating Algorithm to Optimum 

 

Case 3: 𝑡𝑖 ≥ 0, 𝑓𝑖 ≥ 0 (algorithm sets 𝑥𝑖 to true w.p. 𝑡𝑖 𝑡𝑖+𝑓𝑖
 ): 

𝐸 𝐵𝑖 − 𝐵𝑖−1 = 𝑡𝑖
𝑡𝑖

𝑡𝑖+𝑓𝑖
+ 𝑓𝑖

𝑓𝑖

𝑡𝑖+𝑓𝑖
=

1

𝑡𝑖+𝑓𝑖
(𝑡𝑖

2+ 𝑓𝑖
2) 

𝐸 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖 ≤ 0
𝑡𝑖

𝑡𝑖 + 𝑓𝑖
+ 2𝑡𝑖

𝑓𝑖
𝑡𝑖 + 𝑓𝑖

=
1

𝑡𝑖 + 𝑓𝑖
(2𝑡𝑖𝑓𝑖) 

Want to show: 

Key Lemma:  
𝐸 𝐵𝑖 − 𝐵𝑖−1 ≥ 𝐸[𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖] 

Equal to  
(𝑡𝑖 − 𝑓𝑖)

2+2𝑡𝑖𝑓𝑖  
 



Email 

Hi David, 
 
After seeing your email, the very next thing I did this morning was to read a paper I'd earmarked from the end of the 
day yesterday: 
 
 
Walter Gander, Gene H. Golub, Urs von Matt 
"A constrained eigenvalue problem" 
Linear Algebra and its Applications, vol. 114–115, March–April 1989, Pages 815–839. 
"Special Issue Dedicated to Alan J. Hoffman On The Occasion Of His 65th Birthday" 
 
 
The table of contents of that special issue: 
http://www.sciencedirect.com.proxy.library.cornell.edu/science/journal/00243795/114/supp/C 
 
 
 
Citations for papers in this issue: 
….. 
 
Johan Ugander 

https://mail.cs.cornell.edu/owa/redir.aspx?C=MQJrNxKVwUyjli13t12Ar1-AyHsMqNFIByjIbVD9-2OxlQGUXTPQix86_Ptqhziaw5SN7Alymao.&URL=http://www.sciencedirect.com.proxy.library.cornell.edu/science/journal/00243795/114/supp/C


Question 

Is there a simple combinatorial deterministic ¾-approximation algorithm? 
 

 

 



Clause Weight 

𝑥1 1 

𝑥 1 ∨ 𝑥2 2+ 

𝑥2 1 

𝑥 2 ∨ 𝑥3 2+ 

….. 

𝑥𝑛−1 1 

𝑥 𝑛−1 ∨ 𝑥𝑛 2+ 

Optimal assignment sets 
all variables to true 
OPT = (n-1)(3+) 

Deterministic variant?? 

Greedily maximizing Bi is not good enough: 

Greedily increasing Bi 

sets variables 
𝑥1, … , 𝑥𝑛−1 to false 
GREEDY= (n-1)(2+) 



A negative result 

Poloczek ‘11: No deterministic “priority algorithm” 
can be a ¾ -approximation algorithm, using scheme 
introduced by Borodin, Nielsen, and Rackoff ‘03. 

• Algorithm makes one pass over the variables and 
sets them. 

• Only looks at weights of clauses in which current 
variable appears positively and negatively (not at 
the other variables in such clauses). 

• Restricted in information used to choose next 
variable to set. 

 



But… 

• It is possible…  

• … with a two-pass algorithm (Joint work with 
Ola Svensson). 

• First pass: Set variables 𝑥𝑖  fractionally (i.e. 
probability that 𝑥𝑖  true), so that 𝐸 𝑊 ≥
3

4
 𝑂𝑃𝑇. 

• Second pass: Use method of conditional 
expectations to get deterministic solution of 
value at least as much. 

 



Buchbinder et al.’s approach 

• Keep two bounds on the fractional solution 
– Lower bound LB =  weight of clauses already satisfied 

– Upper bound UB =  weight of clauses not yet unsatisfied 

 

• Greedy can focus on two things:  
– maximize LB,  

– maximize UB, 

    but either choice has bad examples… 
 

• Key idea: make choices to increase B = ½ (LB+UB) 
 

expected 

expected 

expected 



As before 
Let 𝑡𝑖 be (expected) increase in bound 𝐵𝑖−1 if we set 𝑥𝑖 
true; 𝑓𝑖 be (expected) increase in bound if we set 𝑥𝑖 false. 

Algorithm:  
For 𝑖 ← 1 to 𝑛 
• if 𝑡𝑖 <  0, set 𝑥𝑖 to 0 
• if 𝑓𝑖 <  0, set 𝑥𝑖 to 1 

• else, set 𝑥𝑖 to 
𝑡
𝑖

𝑡
𝑖
+𝑓

𝑖
 

For 𝑖 ← 1 to 𝑛 

• If 𝐸 𝑊 𝑋𝑖−1, 𝑥𝑖← 𝑡𝑟𝑢𝑒  ≥

𝐸 𝑊 𝑋𝑖−1, 𝑥𝑖 ← 𝑓𝑎𝑙𝑠𝑒 , set 𝑥𝑖  true 

• Else set 𝑥𝑖  false 



Analysis 

• Proof that after the first pass 𝐸 𝑊 ≥
3

4
 𝑂𝑃𝑇 

is identical to before. 

• Proof that final solution output has value at 

least 𝐸 𝑊 ≥
3

4
 𝑂𝑃𝑇 is via method of 

conditional expectation. 

 



Conclusion 

• We show this two-pass idea works for other 
problems as well (e.g. deterministic ½-
approximation algorithm for MAX DICUT). 

• Can we characterize the problems for which it 
does work? 



 
 

Thank you for your attention 
and  

Happy Birthday Alan! 


