A Simple, Greedy Approximation
Algorithm for MAX SAT

David P. Williamson {ES;

Joint work with Matthias Poloczek (Frankfurt, Cornell)

and Anke van Zuylen (William & Mary)

Greedy algorithms

N

"Greedy g rithoh awetiket warlsh id gifath i 18ad is
right. Greed works.” — Gordon Gekko, Wall Street

Another reason

* When | interviewed at Watson, half of my talk was
about maximum satisfiability, the other half about

the max cut SDP result.
* | thought, “Oh no, | have to talk about

— Hardness of approximation in front of Madhu Sudan,
— Randomized rounding in front of Prabhakar Raghavan,
— And eigenvalue bounds in front of Alan Hoffman.”

* Today | revisit the first part of that talk.

Maximum Satisfiability

* |nput:
n Boolean variables x, ..., x

n
m clauses C, ... , C;;,, with weights wj 2 0
— each clause is a disjunction of literals,

eg. C; = x{VvXxX,VX,

e Goal: truth assignment to the variables that
maximizes the weight of the satisfied clauses

Approximation Algorithms

* An a-approximation algorithm runs in

polynomial time and returns a solution of at
least a times the optimal.

* For a randomized algorithm, we ask that the
expected value is at least a times the optimal.

A Ys-approximation algorithm

* Set each x; to true with probability 7.
* Thenif [; is the number of literals in clause j
FE|[Weight satisfied clauses]

= ij Pr|Clause j satisfied|

AV,

DO | “ﬁ
INgE
E

AV,
DO | —
S

i

~

What about a deterministic algorithm?

Use the method of conditional expectations (Erdss
and Selfridge ‘73, Spencer ‘87)

If E|W |x; « true] = E[W|x; < false] then set
x4 true, otherwise false.

Similarly, if X;_4 is event of how first i —
1 variables are set, then if E[W|X;_4, x; « true] =
E[W‘Xi_L X; < false], set x; true.

Show inductively that E[W |X;] = E[W] = %OPT.

An LP relaxation

m
maximnize E Wwyzj

subject to Z Yi + Z — Yi)

i€ P; i€ N; S

0<uy,;

<1,
0<z;, <1.

v
<C
A
[

<<
5

<<

Randomized rounding

05 |

0

1
0 0.5 ’

Pick any function fsuch that 1 — 47% < f(x) < 4% 1. Set x; true with probability
f(y;), where y* is an optimal LP solution.

Analysis

Pr|clause C; not satisfied] = r (1= f(y)) H f?)

EW]

IV

1V

= T S
“MS lMSL

|V

I
'—1
.:1
B
|

A
5
uN

Z w,; Pr(clause C; satisfied]

w; (1 —4_zj)

;2

b-b-lOO

Integrality gap

m
maximize E Wi

subject to Y y; + Z —yi) >z, YO =\ wv \ @
icP; i€ N, icP; i€N;
0<y; <1. r=1,..., n
0<z; <1, 7 =1.,..., m

r1Vxy, X1VI2, xT1VIy T1VI2

The result is tight since LP solutionz; =z, = z3 =2z, =1

and y; =y, = %feasible for instance above, but OPT = 3.

Current status
* NP-hard to approximate better than 0.875 (Hastad '01)

 Combinatorial approximation algorithms

— Johnson’s algorithm (1974): Simple 2-approximation algorithm
(Greedy version of the randomized algorithm)

— Improved analysis of Johnson’s algorithm: 2/,-approx.
guarantee [Chen-Friesen-Zheng 99, Engebretsen '04]

— Randomizing variable order improves guarantee slightly
[Costello-Shapira-Tetali '11]

e Algorithms using Linear or Semidefinite Programming
— Yannakakis '94, Goemans-W '94:

Question [W '98]: /¢ /'t/m’/Zé to oblu a 3/4-9a/m»/hat/'m
abporithm withoat solhing a livear /mymf

(Selected) recent results

* Poloczek-Schnitger '11:

— “randomized Johnson” — combinatorial 34-
approximation algorithm

* Van Zuylen’'11.:

— Simplification of “randomized Johnson” probabilities
and analysis

— Derandomization using Linear Programming

 Buchbinder, Feldman, Naor, and Schwartz '12:

— Another %-approximation algorithm for MAX SAT as a
special case of submodular function maximization

— We show MAX SAT alg is equivalent to van Zuylen ‘11.

(Selected) recent results

* Poloczek-Schnitger’11
* Van Zuylen’11
 Buchbinder, Feldman, Naor and Schwartz '12

Common properties:

* jteratively set the variables in an “online” fashion,

* the probability of setting x; to true depends on
clauses containing x; or X; that are still undecided.

Today

* Give “textbook” version of Buchbinder et al.’s
algorithm with an even simpler analysis

Buchbinder et al.’s approach

* Keep two bounds on the solution
— Lower bound LB = weight of clauses already satisfied
— Upper bound UB = weight of clauses not yet unsatisfied

* Greedy can focus on two things:
— maximize LB,
— maximize UB,

but either choice has bad examples...

* Key idea: make choices to increase B = /2 (LB+UB)

B,

I
B,= %(LB,+UB,)

I
UB

0
(=2Wj)

Weight of Weight of

undecided undecided
clauses clauses
satisfied by unsatisfied by
x,= True X{= ’rm.ie
[I
| | | | |
I I I I I
-1

Set x, to true

Weight of Weight of
undecided undecided
clauses clauses
satisfied by unsatisfied by
x,= true X{= ’rm.ie

(_A_\ Bl (\

| | - | |

I I I I I
LB, LB, B, UB, UB,

Set x, to true

Weight of Weight of
undecided undecided
clauses clauses
satisfied by unsatisfied by
x,= true X{= ’rm.ie

(_A_\ Bl (\

| | | - | | |

I I I I I I
LB, LB, LB, B, UB, UB, UB,

Set x, to true
or
Set x, to false

Weight of Weight of
undecided undecided
clauses clauses
satisfied by unsatisfied by
x,= True X{= ’rm.ie

B, B, | |
| | | L1 | L1
I I I N I [
LB, LB, LB, B, UB, UB, UB,

Set x, to true
or
Set x, to false

Guaranteed that
— \(Bl-BOI+(\Bl-BO)' >0

/ /

T £,

—_—

Remark: This is the

Weight of algorithm proposed Weight of
undecided independently by undecided
clauses BFENS’12 and vZ’11 clauses
satisfied by unsatisfied by
x;= true X; = ’rrﬂe

| | | 1 |

| | | Ll
LB,, LB, LB, UB,UB; UB,,

(]

Algorithm:

e ift, < 0,%et x; to false

«if f;, < 0, setx;to tr.ue (B-B, ,)+(B-B. ;) =0
* else, set x; to true with —

probability # G f

Example

nitalize: [T
+ LB=0 . ’
. UB _ 6 X1 sz
B X, V X3 3
Step 1:

cty == (ALB+AUB) =- (1+(=2)) = —

: f1=%(ALB+AUB)=%(2+O)=1

* Set x, to false

Example

Clause | Weight
X1 2
XY X
Xy V X3 3

Step 2:

ct,== (A LB+AUB) =2 (140) ==

. £, =§ (A LB +A UB) =§ B+ (-1)) =1
* Set x, to true with probability 1/3 and to false
with probability 2/3

Example

Clause Weight
%4 2

X1V X,
Xy V X3 3
Algorithm’s solution:
x, = false
X, = true w.p. 1/3 and false w.p. 2/3
X3 = true

Expected weight of satisfied clauses: 5§

Different Languages

 Bill, Baruch, and | would say:
Let G be a graph...
* Alan would say:

Let A be a matrix...

And we would be talking about the same thing!

Relating Algorithm to Optimum

Let x1, x5, ..., X,, be an optimal truth assignment

Let OPT, = weight of clauses satisfied if setting
X1, ..., X; as the algorithm does, and x;,; =

X

- X
xi_l_l, ...,xn - Xn

Key Lemma:

E|B; —B;_1 | = E[OPT;_; — OPT;]

OPT

LB, By B, OPT, UB,

Key Lemma:
E[B; — Bi_1] = E[OPT;_; — OPT}]

OPT, =B, =
weight of
ALG’s solution

OPT

/

f f
B, > % OPT > % (OPT-B,)

Key Lemma:
Conclusion: expected weight of ALG’s solution is

OPT,

1 1 3
E[Ba] 2 By + (OPT — Bo) =5 (OPT + Bo) > 7 OPT

UB,

Relating Algorithm to Optimum

Weight of Weight of
undecided clauses undecided clauses
satisfied by x;= unsatisfied by x; =
True | true A

| |] %i ?i L1 |

I | I I L

*—
Suppose x; = true
If algorithm sets x; to true,

Want to show:
Key Lemma:

* Bi—=Bi1=1 E[B; — B;_1]| = E[OPT;_y — OPT{]
o OPTi—l — OPTL — O

If algorithm sets x; to false,

* Bi—=B;1=f;

¢ OPTi_l — OPTL < LBl — LBi—l + (UBL — UBi—l)
= 2(B; — Bi_1) = 2

Relating Algorithm to Optimum

Want to show:

Know:
Key Lemma: If algorithm sets x; to true,
E|B; — B;_1] = E[OPT;_; — OPT{] * Bi—Bi =1

OPT;_{ — OPT; =0

If algorithm sets x; to false,
B; = Bi—1 = f;
OPT;_1 — OPT; < 2t;

Case 1: f; < 0 (algorithm sets x; to true):
E[Bl — Bi—l] — ti >0 = E[OPTi_l — OPTL]

Case 2: t; < 0 (algorithm sets x; to false):
E[B; — B;_1] = f; > 0> 2t; = E|OPT;_; — OPT;]

Relating Algorithm to Optimum

Want to show:

Know:
Key Lemma: If algorithm sets x; to true,
E|B; — B;_1] = E[OPT;_; — OPT{] * Bi—Bi =1

OPT;_, — OPT; = 0

Ise,
Equal to

(i — f)*+2tf; £

Case3:t; =0, f; = O (algorlthm sets x; to tvp /t Sk

. i o1
E_Bi Bl 1] L ti+ fl T fl ti+f; o ti+fi
t

E[OPT;_, — OPT;] < 0 ——— + 2t; 2t
| 1—1 l] tl_l_]c'l ltl_l_ﬂ +ﬂ(lﬁ)

Email

Hi David,

After seeing your email, the very next thing | did this morning was to read a paper I'd earmarked from the end of the
day yesterday:

Walter Gander, Gene H. Golub, Urs von Matt

"A constrained eigenvalue problem"

Linear Algebra and its Applications, vol. 114-115, March—April 1989, Pages 815—-839.
"Special Issue Dedicated to Alan J. Hoffman On The Occasion Of His 65th Birthday"

The table of contents of that special issue:
http://www.sciencedirect.com.proxy.library.cornell.edu/science/journal/00243795/114/supp/C

Citations for papers in this issue:

Johan Ugander

https://mail.cs.cornell.edu/owa/redir.aspx?C=MQJrNxKVwUyjli13t12Ar1-AyHsMqNFIByjIbVD9-2OxlQGUXTPQix86_Ptqhziaw5SN7Alymao.&URL=http://www.sciencedirect.com.proxy.library.cornell.edu/science/journal/00243795/114/supp/C

Question

(¢ there a @/}f(//z/e combrinatorial delerminstio %—%Wm/)rm Lion afyo/c/'b‘é/ﬂ 7

Deterministic variant??

Greedily maximizing B, is not good enough:

Clause Weight _
X1 1

DElez

2+¢
1

2+¢

2+¢

Optimal assignment sets
all variables to true
OPT = (n-1)(3+€)

Greedily increasing B,
sets variables

X1, -+, Xn—1 to false
GREEDY= (n-1)(2+€)

A negative result

Poloczek ‘11: No deterministic “priority algorithm”
can be a % -approximation algorithm, using scheme
introduced by Borodin, Nielsen, and Rackoff ‘03.

* Algorithm makes one pass over the variables and
sets them.

* Only looks at weights of clauses in which current
variable appears positively and negatively (not at
the other variables in such clauses).

e Restricted in information used to choose next
variable to set.

But...

It is possible...

... with a two-pass algorithm (Joint work with
Ola Svensson).

First pass: Set variables x; fractionally (i.e.
probability that x; true), so that E[W] =

= OPT.
Second pass: Use method of conditional

expectations to get deterministic solution of
value at least as much.

Buchbinder et al.’s approach
¢ Keep two bounds‘ expected ko ctional solution
— Lower bound LB =Vweight of clauses already satisfied

— Upper bound UB = weight of clauses not yet unsatisfied
expected
e Greedy can focus o[:wn‘ﬁings:

— maximize LB,
— maximize UB,

but either choice has bad examp|

expected

* Key idea: make choices to increase’ B = /2 (LB+UB)

As before

Let t; be (expected) increase in bound B;_; if we set x;
true; f; be (expected) increase in bound if we set x; false.

Algorithm:

Fori < 1ton

e ift. < 0,setx;to0
e if f, < 0,setx;to1l

t.
* else, set x; to ﬁ
[i

Fori < 1ton
e IfE|W|X;_1,x; < true] =

E[W‘Xi_l, X; < false], set x; true
* Else set x; false

Analysis

OPT

A w

* Proof that after the first pass E[(W] >
is identical to before.

* Proof that final solution output has value at
least E|[W] > % OPT is via method of
conditional expectation.

Conclusion

 We show this two-pass idea works for other
problems as well (e.g. deterministic Y-
approximation algorithm for MAX DICUT).

* Can we characterize the problems for which it
does work?

[hank you fm your a Clenlion
and

#, appy Zg/}éb‘éa/ay Aban/

