
A Simple, Greedy Approximation
Algorithm for MAX SAT

David P. Williamson

Joint work with Matthias Poloczek (Frankfurt, Cornell)

and Anke van Zuylen (William & Mary)

Greedy algorithms

“Greed, for lack of a better word, is good. Greed is
right. Greed works.” – Gordon Gekko, Wall Street
“Greedy algorithms work.” – Alan Hoffman, IBM

Another reason

• When I interviewed at Watson, half of my talk was
about maximum satisfiability, the other half about
the max cut SDP result.

• I thought, “Oh no, I have to talk about

– Hardness of approximation in front of Madhu Sudan,

– Randomized rounding in front of Prabhakar Raghavan,

– And eigenvalue bounds in front of Alan Hoffman.”

• Today I revisit the first part of that talk.

Maximum Satisfiability

• Input:

 𝑛 Boolean variables 𝑥1, … , 𝑥𝑛

 𝑚 clauses 𝐶1, … , 𝐶𝑚 with weights 𝑤𝑗  0

– each clause is a disjunction of literals,

 e.g. 𝐶1 = 𝑥1  𝑥2  𝑥 3

• Goal: truth assignment to the variables that
maximizes the weight of the satisfied clauses

Approximation Algorithms

• An α-approximation algorithm runs in
polynomial time and returns a solution of at
least α times the optimal.

• For a randomized algorithm, we ask that the
expected value is at least α times the optimal.

A ½-approximation algorithm

• Set each 𝑥𝑖 to true with probability ½.

• Then if 𝑙𝑗 is the number of literals in clause 𝑗

What about a deterministic algorithm?

• Use the method of conditional expectations (Erdős
and Selfridge ‘73, Spencer ‘87)

• If 𝐸 𝑊 𝑥1 ← 𝑡𝑟𝑢𝑒 ≥ 𝐸 𝑊 𝑥1 ← 𝑓𝑎𝑙𝑠𝑒 then set
𝑥1 true, otherwise false.

• Similarly, if 𝑋𝑖−1 is event of how first 𝑖 −
1 variables are set, then if 𝐸 𝑊 𝑋𝑖−1, 𝑥𝑖← 𝑡𝑟𝑢𝑒 ≥
𝐸 𝑊 𝑋𝑖−1, 𝑥𝑖 ← 𝑓𝑎𝑙𝑠𝑒 , set 𝑥𝑖 true.

• Show inductively that 𝐸[𝑊|𝑋𝑖] ≥ 𝐸 𝑊 ≥
1

2
 OPT.

An LP relaxation

Randomized rounding

Pick any function 𝑓such that 1 − 4−𝑥 ≤ 𝑓 𝑥 ≤ 4𝑥−1. Set 𝑥𝑖 true with probability
𝑓(𝑦𝑖

∗), where 𝑦∗ is an optimal LP solution.

Analysis

Integrality gap

The result is tight since LP solution 𝑧1 = 𝑧2 = 𝑧3 = 𝑧4 = 1

and 𝑦1 = 𝑦2 =
1

2
 feasible for instance above, but OPT = 3.

Current status
• NP-hard to approximate better than 0.875 (Håstad ’01)

• Combinatorial approximation algorithms

– Johnson’s algorithm (1974): Simple ½-approximation algorithm
(Greedy version of the randomized algorithm)

– Improved analysis of Johnson’s algorithm: 2/3-approx.
guarantee [Chen-Friesen-Zheng ’99, Engebretsen ’04]

– Randomizing variable order improves guarantee slightly
[Costello-Shapira-Tetali ’11]

• Algorithms using Linear or Semidefinite Programming

– Yannakakis ’94, Goemans-W ’94:
 ¾-approximation algorithms
– Best guarantee 0.7969 [Avidor-Berkovitch-Zwick ’05]

Question [W ’98]: Is it possible to obtain a 3/4-approximation
algorithm without solving a linear program?

(Selected) recent results

• Poloczek-Schnitger ’11:
– “randomized Johnson” – combinatorial ¾-

approximation algorithm

• Van Zuylen ’11:
– Simplification of “randomized Johnson” probabilities

and analysis
– Derandomization using Linear Programming

• Buchbinder, Feldman, Naor, and Schwartz ’12:
– Another ¾-approximation algorithm for MAX SAT as a

special case of submodular function maximization
– We show MAX SAT alg is equivalent to van Zuylen ‘11.

(Selected) recent results

• Poloczek-Schnitger’11

• Van Zuylen ’11

• Buchbinder, Feldman, Naor and Schwartz ’12

Common properties:

• iteratively set the variables in an “online” fashion,

• the probability of setting 𝑥𝑖 to true depends on

clauses containing 𝑥𝑖 or 𝑥 𝑖 that are still undecided.

Today

• Give “textbook” version of Buchbinder et al.’s
algorithm with an even simpler analysis

Buchbinder et al.’s approach

• Keep two bounds on the solution
– Lower bound LB = weight of clauses already satisfied

– Upper bound UB = weight of clauses not yet unsatisfied

• Greedy can focus on two things:
– maximize LB,

– maximize UB,

 but either choice has bad examples…

• Key idea: make choices to increase B = ½ (LB+UB)

LB0

(= 0)
 UB0

(=∑wj)
B0= ½(LB0+UB0)

LB0 UB0 B0= ½(LB0+UB0)

Set 𝑥1 to true

Weight of
undecided
clauses
satisfied by
𝑥1= true

LB1 UB1

Weight of
undecided
clauses
unsatisfied by
𝑥1= true

LB0 UB0 B0

Set 𝑥1 to true

LB1 UB1

B1

Weight of
undecided
clauses
satisfied by
𝑥1= true

Weight of
undecided
clauses
unsatisfied by
𝑥1= true

LB0 UB0

Set 𝑥1 to true
 or
Set 𝑥1 to false

LB1 UB1 LB1 UB1

B1

B0

Weight of
undecided
clauses
satisfied by
𝑥1= true

Weight of
undecided
clauses
unsatisfied by
𝑥1= true

LB0 UB0

Set 𝑥1 to true
 or
Set 𝑥1 to false

LB1 UB1 LB1 UB1

 B1 B1

Guaranteed that
(B1-B0)+(B1-B0) ≥ 0

B0

t1 f1

Weight of
undecided
clauses
satisfied by
𝑥1= true

Weight of
undecided
clauses
unsatisfied by
𝑥1= true

(Bi-Bi-1)+(Bi-Bi-1) ≥ 0

ti fi

Algorithm:
• if 𝑡𝑖 < 0, set 𝑥𝑖 to false
• if 𝑓𝑖 < 0, set 𝑥𝑖 to true
• else, set 𝑥𝑖 to true with

probability
𝑡
𝑖

𝑡
𝑖
+𝑓

𝑖

Remark: This is the
algorithm proposed

independently by
BFNS’12 and vZ’11

LBi-1 UBi-1 LBi
UBi LBi UBi

 Bi Bi

Bi-1

Weight of
undecided
clauses
satisfied by
𝑥𝑖= true

Weight of
undecided
clauses
unsatisfied by
𝑥𝑖 = true

Example

Initalize:

• LB = 0

• UB = 6

Step 1:

• 𝑡1 =
1

2
 △ 𝐿𝐵 +△ 𝑈𝐵 =

1

2
 1 + (−2) = −

1

2

• 𝑓1 =
1

2
 △ 𝐿𝐵 +△ 𝑈𝐵 =

1

2
 2 + 0 = 1

• Set x1 to false

Clause Weight

𝑥 1 2

𝑥1 ∨ 𝑥2 1

𝑥 2 ∨ 𝑥3 3

Example

Step 2:

• 𝑡2 =
1

2
 △ 𝐿𝐵 +△ 𝑈𝐵 =

1

2
 1 + 0 =

1

2

• 𝑓2 =
1

2
 △ 𝐿𝐵 +△ 𝑈𝐵 =

1

2
 3 + (−1) = 1

• Set x2 to true with probability 1/3 and to false
with probability 2/3

Clause Weight

𝑥 1 2

𝑥1 ∨ 𝑥2 1

𝑥 2 ∨ 𝑥3 3

Example

Algorithm’s solution:
 𝑥1 = false
 𝑥2 = true w.p. 1/3 and false w.p. 2/3
 𝑥3 = true

Expected weight of satisfied clauses: 5
1

3

Clause Weight

𝑥 1 2

𝑥1 ∨ 𝑥2 1

𝑥 2 ∨ 𝑥3 3

Different Languages

• Bill, Baruch, and I would say:

Let 𝐺 be a graph...

• Alan would say:

Let 𝐴 be a matrix...

And we would be talking about the same thing!

Relating Algorithm to Optimum

Let 𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗ be an optimal truth assignment

Let 𝑂𝑃𝑇𝑖 = weight of clauses satisfied if setting
𝑥1, … , 𝑥𝑖 as the algorithm does, and 𝑥𝑖+1 =
𝑥𝑖+1
∗ , … , 𝑥𝑛 = 𝑥𝑛

∗

Key Lemma:
𝐸 𝐵𝑖 − 𝐵𝑖−1 ≥ 𝐸[𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖]

Let 𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗ an optimal truth assignment

Let 𝑂𝑃𝑇𝑖 = weight of clauses satisfied if setting
𝑥1, … , 𝑥𝑛as the algorithm does, and 𝑥𝑖+1 =
𝑥𝑖+1
∗ , … , 𝑥𝑛 = 𝑥𝑛

∗

Key Lemma:
𝐸 𝐵𝑖 − 𝐵𝑖−1 ≥ 𝐸[𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖]

LB0 B0 UB0 B1

OPT

OPT1

Let an optimal truth assignment

Let = weight of clauses satisfied if setting as the
algorithm does, and

Key Lemma:

LB0 B0 UB0 B1 OPT1

OPTn = Bn =
weight of
ALG’s solution

B0 ≥ ½ OPT

≥ ½ (OPT-B0)

OPT

Conclusion: expected weight of ALG’s solution is

𝐸 𝐵𝑛 ≥ 𝐵0 +
1

2
𝑂𝑃𝑇 − 𝐵0 =

1

2
𝑂𝑃𝑇 + 𝐵0 ≥

3

4
𝑂𝑃𝑇

Relating Algorithm to Optimum

LBi-1 UBi-1 LBi
UBi LBi UBi

 Bi Bi

Bi-1

Suppose 𝑥𝑖
∗= true

If algorithm sets 𝑥𝑖 to true,
• 𝐵𝑖 − 𝐵𝑖−1 = 𝑡𝑖
• 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖 = 0
If algorithm sets 𝑥𝑖 to false,
• 𝐵𝑖 − 𝐵𝑖−1 = 𝑓𝑖
• 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖 ≤ 𝐿𝐵𝑖 − 𝐿𝐵𝑖−1 + 𝑈𝐵𝑖 − 𝑈𝐵𝑖−1

= 2 𝐵𝑖 − 𝐵𝑖−1 = 2𝑡𝑖

Want to show:

Key Lemma:
𝐸 𝐵𝑖 − 𝐵𝑖−1 ≥ 𝐸[𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖]

Weight of
undecided clauses
satisfied by 𝑥𝑖=
true

Weight of
undecided clauses
unsatisfied by 𝑥𝑖 =
true

Relating Algorithm to Optimum

Case 1: 𝑓𝑖 < 0 (algorithm sets 𝑥𝑖 to true):
𝐸 𝐵𝑖 − 𝐵𝑖−1 = 𝑡𝑖 > 0 = 𝐸 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖

Case 2: 𝑡𝑖 < 0 (algorithm sets 𝑥𝑖 to false):

𝐸 𝐵𝑖 − 𝐵𝑖−1 = 𝑓𝑖 > 0 > 2𝑡𝑖 ≥ 𝐸 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖

Know:
If algorithm sets 𝑥𝑖 to true,
• 𝐵𝑖 − 𝐵𝑖−1 = 𝑡𝑖
• 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖 = 0
If algorithm sets 𝑥𝑖 to false,
• 𝐵𝑖 − 𝐵𝑖−1 = 𝑓𝑖
• 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖 ≤ 2𝑡𝑖

Want to show:

Key Lemma:
𝐸 𝐵𝑖 − 𝐵𝑖−1 ≥ 𝐸[𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖]

Know:
If algorithm sets 𝑥𝑖 to true,
• 𝐵𝑖 − 𝐵𝑖−1 = 𝑡𝑖
• 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖 = 0
If algorithm sets 𝑥𝑖 to false,
• 𝐵𝑖 − 𝐵𝑖−1 = 𝑓𝑖
• 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖 ≤ 2𝑡𝑖

Relating Algorithm to Optimum

Case 3: 𝑡𝑖 ≥ 0, 𝑓𝑖 ≥ 0 (algorithm sets 𝑥𝑖 to true w.p. 𝑡𝑖 𝑡𝑖+𝑓𝑖
):

𝐸 𝐵𝑖 − 𝐵𝑖−1 = 𝑡𝑖
𝑡𝑖

𝑡𝑖+𝑓𝑖
+ 𝑓𝑖

𝑓𝑖

𝑡𝑖+𝑓𝑖
=

1

𝑡𝑖+𝑓𝑖
(𝑡𝑖

2+ 𝑓𝑖
2)

𝐸 𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖 ≤ 0
𝑡𝑖

𝑡𝑖 + 𝑓𝑖
+ 2𝑡𝑖

𝑓𝑖
𝑡𝑖 + 𝑓𝑖

=
1

𝑡𝑖 + 𝑓𝑖
(2𝑡𝑖𝑓𝑖)

Want to show:

Key Lemma:
𝐸 𝐵𝑖 − 𝐵𝑖−1 ≥ 𝐸[𝑂𝑃𝑇𝑖−1 − 𝑂𝑃𝑇𝑖]

Equal to
(𝑡𝑖 − 𝑓𝑖)

2+2𝑡𝑖𝑓𝑖

Email

Hi David,

After seeing your email, the very next thing I did this morning was to read a paper I'd earmarked from the end of the
day yesterday:

Walter Gander, Gene H. Golub, Urs von Matt
"A constrained eigenvalue problem"
Linear Algebra and its Applications, vol. 114–115, March–April 1989, Pages 815–839.
"Special Issue Dedicated to Alan J. Hoffman On The Occasion Of His 65th Birthday"

The table of contents of that special issue:
http://www.sciencedirect.com.proxy.library.cornell.edu/science/journal/00243795/114/supp/C

Citations for papers in this issue:
…..

Johan Ugander

https://mail.cs.cornell.edu/owa/redir.aspx?C=MQJrNxKVwUyjli13t12Ar1-AyHsMqNFIByjIbVD9-2OxlQGUXTPQix86_Ptqhziaw5SN7Alymao.&URL=http://www.sciencedirect.com.proxy.library.cornell.edu/science/journal/00243795/114/supp/C

Question

Is there a simple combinatorial deterministic ¾-approximation algorithm?

Clause Weight

𝑥1 1

𝑥 1 ∨ 𝑥2 2+

𝑥2 1

𝑥 2 ∨ 𝑥3 2+

…..

𝑥𝑛−1 1

𝑥 𝑛−1 ∨ 𝑥𝑛 2+

Optimal assignment sets
all variables to true
OPT = (n-1)(3+)

Deterministic variant??

Greedily maximizing Bi is not good enough:

Greedily increasing Bi

sets variables
𝑥1, … , 𝑥𝑛−1 to false
GREEDY= (n-1)(2+)

A negative result

Poloczek ‘11: No deterministic “priority algorithm”
can be a ¾ -approximation algorithm, using scheme
introduced by Borodin, Nielsen, and Rackoff ‘03.

• Algorithm makes one pass over the variables and
sets them.

• Only looks at weights of clauses in which current
variable appears positively and negatively (not at
the other variables in such clauses).

• Restricted in information used to choose next
variable to set.

But…

• It is possible…

• … with a two-pass algorithm (Joint work with
Ola Svensson).

• First pass: Set variables 𝑥𝑖 fractionally (i.e.
probability that 𝑥𝑖 true), so that 𝐸 𝑊 ≥
3

4
 𝑂𝑃𝑇.

• Second pass: Use method of conditional
expectations to get deterministic solution of
value at least as much.

Buchbinder et al.’s approach

• Keep two bounds on the fractional solution
– Lower bound LB = weight of clauses already satisfied

– Upper bound UB = weight of clauses not yet unsatisfied

• Greedy can focus on two things:
– maximize LB,

– maximize UB,

 but either choice has bad examples…

• Key idea: make choices to increase B = ½ (LB+UB)

expected

expected

expected

As before
Let 𝑡𝑖 be (expected) increase in bound 𝐵𝑖−1 if we set 𝑥𝑖
true; 𝑓𝑖 be (expected) increase in bound if we set 𝑥𝑖 false.

Algorithm:
For 𝑖 ← 1 to 𝑛
• if 𝑡𝑖 < 0, set 𝑥𝑖 to 0
• if 𝑓𝑖 < 0, set 𝑥𝑖 to 1

• else, set 𝑥𝑖 to
𝑡
𝑖

𝑡
𝑖
+𝑓

𝑖

For 𝑖 ← 1 to 𝑛

• If 𝐸 𝑊 𝑋𝑖−1, 𝑥𝑖← 𝑡𝑟𝑢𝑒 ≥

𝐸 𝑊 𝑋𝑖−1, 𝑥𝑖 ← 𝑓𝑎𝑙𝑠𝑒 , set 𝑥𝑖 true

• Else set 𝑥𝑖 false

Analysis

• Proof that after the first pass 𝐸 𝑊 ≥
3

4
 𝑂𝑃𝑇

is identical to before.

• Proof that final solution output has value at

least 𝐸 𝑊 ≥
3

4
 𝑂𝑃𝑇 is via method of

conditional expectation.

Conclusion

• We show this two-pass idea works for other
problems as well (e.g. deterministic ½-
approximation algorithm for MAX DICUT).

• Can we characterize the problems for which it
does work?

Thank you for your attention
and

Happy Birthday Alan!

