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A Simple Graph Problem

MIN WCF (k)
Input:

e Undirected graph G = (V, E);
e Edge costs ¢(e) > 0 for all e € E;
e Positive integer k.

Goal: Find a minimum-cost forest F' such that each component
has at least k vertices.
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A Simple Graph Problem

MIN WCF (k)
Input:

e Undirected graph G = (V, E);
e Edge costs ¢(e) > 0 for all e € E;
e Positive integer k.

Goal: Find a minimum-cost forest F' such that each component
has at least k vertices.

k = 2 = minimum edge-cover problem.

k = n = minimum spanning tree problem.

k > 3, constant = NP-hard (Imieliniska, Khachiyan, Kalantari
1993, Bazgan, Couétoux, Tuza, 2011)
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Approximation Algorithms

An a-approximation algorithm is a polynomial-time algorithm
that returns a solution of cost at most « times the cost of an
optimal solution.
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A 2-Approximation Algomthm

A component is small if < k vertices, big otherwise.

F10

while F' is not a feasible solution do
Let e be the cheapest edge joining two comps Cp, Cs, at

least one small
F+ FU{e}
Return F

Due to Imielinska, Khachiyan, Kalantari 1993.
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A Tight Example

1—e¢ 1 1—c¢
(o (=)
Circles cliques of cost zero edges. Algorithm returns {ej, e3} of
cost 2 — €, optimal is {ey} of cost 1.
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A Generalization

Goemans and W 1994 generalize to functions h: 2"V — {0,1}.
Want min-cost edges F' such that [0(S) N F| > h(S) for all

S C V, where §(S) is set of edges with exactly one endpoint in
S.
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A Generalization

Goemans and W 1994 generalize to functions h : 2V — {0,1}.
Want min-cost edges F' such that [0(S) N F| > h(S) for all

S C V, where §(S) is set of edges with exactly one endpoint in
S.

Easy change: small C' = h(C) =1, large C = h(C) =0

F+0
while F' is not a feasible solution do
Let e be the cheapest edge joining two comps Cp, Cs, at

least one small
F «— FuU{e}
Return F
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Other Problems

Gives a 2-approximation algorithm if h is downwards monotone:
MT)=1= h(S)=1forall SC T.

MIN WCF(k): h(S) = 1 if |S| < k.
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Other Problems

Gives a 2-approximation algorithm if h is downwards monotone:
MT)=1= h(S)=1forall SC T.

MIN WCF(k): h(S) =1if |S| < k.

Another example: Depots D C V, cost ¢(d). Find min-cost

edges F, depots D’ such that each component has at least k
vertices, at least 1 open depot.
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Couétoux’s Algorithm for MIN WCF (k)

In 2011, Couétoux gives a 3-approx1mat1on algorithm for MIN
WCF (k), simple modification of Imielinska et al. algorithm.

Main Idea:
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Couétoux’s Algorithm for MIN WCF (k)

In 2011, Couétoux gives a %-approximation algorithm for MIN
WCF (k), simple modification of Imielinska et al. algorithm.

Main Idea:
e Fach edge added reduces number of small components.

e Should be willing to pay twice as much for edge that
eliminates two small components.

e Edge e good if it connects two small components, results in
large component; bad edge if it connects two components,
at least one small.
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Couétoux’s Algorithm

F+ 10
while F' is not a feasible solution do
Let e be the cheapest good edge (if such an edge exists);

joins two small comps into a large comp
Let € be the cheapest bad edge; joins two comps, at
least one small
if good e exists and ¢(e) < 2¢(e’) then
F «+ FU{e}
else
F+ Fu{c}
Return F
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Example for £ =4

24 ¢€ 1
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Example for £ =4

Cost is 8.
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Optimal Solution

Optimal cost is 6 + €.
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A Tight Example

Circles cliques of cost zero edges. Algorithm returns {es, e1, e3}
of cost 3 — ¢, optimal is {ej, e3} of cost 2.

Analysis: Complicated charging scheme.
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Our Contributions

e We extend Couétoux’s algorithm to downwards monotone
functions (easy: small C' = h(C) =1, large C = h(C) =0)
o We simplify the overall analysis (harder).
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Our Contributions

e We extend Couétoux’s algorithm to downwards monotone
functions (easy: small C' = h(C) =1, large C = h(C) =0)
o We simplify the overall analysis (harder).

Main idea: Generate a “dual” solution of value at least cost of
algorithm’s solution. Show that 2/3 of dual solution is a lower
bound on any feasible solution.
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Our algorithm

F <+
while F' is not a feasible solution do
Let e be the cheapest good edge (if such an edge exists);
joins two comps Ci, Cy with h(Cy) = h(Cy) =1,
h(CLUCy) =0
Let € be the cheapest bad edge; joins two comps Cf, C,
max(h(Cl), h(Cg)) =1
if good e exists and ¢(e) < 2¢(e’) then
F+ FU{e}
else
F+ FU{}
Return F
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Ideas of the analysis

For simplicity, assume there is no vertex v such that h({v}) = 0.

First, make a mixed graph by adding arcs for every edge.
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Ideas of the analysis

For simplicity, assume there is no vertex v such that h({v}) = 0.

First, make a mixed graph by adding arcs for every edge.

C
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Birooted Components

Note: every component in the algorithm’s solution has exactly
one good edge; the edge added when the connected component
first had some large subcomponent.

For analysis, treat good edge as undirected, all other edges in
component directed towards the two endpoints of the good
edge. Call the component birooted.
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“Duals”

Introduce variables y(S) for each S C V; will have

> y(S) < ca)

S:a€6+(S)

for all arcs a, where 67 (S) are arcs out of S.
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“Duals”

Introduce variables y(S) for each S C V; will have

> y(S) < ca)

S:aes+(5S)
for all arcs a, where 67 (S) are arcs out of S.
Inequality may be violated for edges e; may have

Z y(S) > c(e).

S:e€d(S)
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The Algorithm, Again

F«0
y<0
while F is not a feasible solution do
Increase y(C) for all components C with h(C) = 1 until either:
(1) ES:ee&(S) y(S) > c(e) for some good edge e; OR
(2) Zs:a'ea+(5) y(S) = c(a’) for some bad arc @’ = bad edge ¢’;
if (1) happens then
F+ Fu{e}
else
F+ FU{e}
Return F'
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Back to Analysis

For birooted component C' constructed by the algorithm, can
show that cost of C' at most

> y(S).

SCC

For each arc a in C, 3 g.qe5+(s) Y(S) = c(a), and for good edge

’ S 5(S) > c(e).

e€d(S)
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Key Lemma

Say that a component C € §(5) if some edge of C is in §(S).

For any feasible solution F*, and any component C* of F*,

I GEED O]

S:C*ed(S) ec C*

Then let F* be an optimal solution, C* its components, F' the
algorithm’s solution. Then

docle <D wS < Y >yl

ecF S C*EC* S:C*€d(S)

<y (; ) c(e))

Cc*ec* eeC*

¥«

ecF'*
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Proof Ideas for Key Lemma

For each component C* of solution F*, identify a good edge
and biroot the component.

N
€1 ,€7 !
N
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Proof Ideas for Key Lemma

For each component C* of solution F*, identify a good edge
and biroot the component.

1
€
1
0
€3
N . €572
eI, L 61 /
N 7/ /
]. NV ]. / 0
Pc

€6 €10 €4
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Proof Ideas for Key Lemma cont.

To prove:

> uH<s Y o)

5:C*€8(8) ecC*
Let e* = (u*, v*) be good edge of birooted component.

Since Y g.qe5+(s) ¥(S) < c(a) for each arc a in birooted
component, only need to bound Y g.,« or o+ ¥(S5)-
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Proof Ideas for Key Lemma cont.

To prove:

> uH<s Y o)

5:C*€8(8) ecC*
Let e* = (u*, v*) be good edge of birooted component.

Since Y g.qest(s) Y(S) < c(a) for each arc a in birooted
component, only need to bound Y g.,« or o+ ¥(S5)-
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Proof Ideas for Key Lemma cont.

To prove:

S:C*€6(S) ecC*

It ZS:u*ES y(S) + ZS:?}*ES y(S) < %C(E*)7 then done.
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Proof Ideas for Key Lemma cont.

To prove:

S:C*€6(S) ecC*

It ZS:u*GS y(S) + ZS:?}*ES y(S) < %C(E*)7 then done.

Otherwise, argue that C* must have an edge ¢’ # e* such that
S siures Y(S) + X gares ¥(S) < 3c(€) + Sc(e*). Then also done.
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o What about proper functions f : 2V — {0,1}? f proper if
£(8) = F(V = §) and f(A U B) < max(f(4), {(B)) for
disjoint A, B. Includes Steiner tree, generalized Steiner
tree, and others. Only a 2-approximation algorithm known
for this class (Goemans W 1995).
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Open questions

e Goemans and W 1994 actually applied to downwards
monotone functions h: 2V — N (can take multiple copies
of an edge). Can our algorithm be extended to this case?

o What about proper functions f : 2V — {0,1}? f proper if
£(8) = F(V = §) and f(A U B) < max(f(4), {(B)) for
disjoint A, B. Includes Steiner tree, generalized Steiner
tree, and others. Only a 2-approximation algorithm known
for this class (Goemans W 1995).

Thank you for your attention.
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