
ORIE 6334 Bridging Continuous and Discrete Optimization October 2, 2019

Problem Set 2
Due Date: October 23, 2019

As a reminder, the collaboration policy from the syllabus is as follows:

Your work on problem sets and exams should be your own. You may dis-
cuss approaches to problems with other students, but as a general guide-
line, such discussions may not involve taking notes. You must write up
solutions on your own independently, and acknowledge anyone with whom
you discussed the problem by writing their names on your problem set.
You may not use papers or books or other sources (e.g. material from the
web) to help obtain your solution.

1. Let λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M) be the eigenvalues of any matrix M ∈
<n×n. The Courant-Weyl inequalities state that for symmetric real matrices A
and B,

λi(A+B) ≤ λj(A) + λi−j+n(B)

for 1 ≤ i ≤ j ≤ n and

λi(A+B) ≥ λj(A) + λi−j+1(B)

for 1 ≤ j ≤ i ≤ n.

(a) Prove the inequalities. (Hint: recall the proof of the interlacing theorem.
Now we need to think about three different vector spaces, for A + B, A,
and B).

(b) Use the inequalities to prove a type of interlacing theorem for Laplacians.
Consider two graphs on the same vertex set, G = (V,E) and H = (V,E ′)
in which E ′ = E − {e} for a single edge e ∈ E. As usual, we assume that
the eigenvalues of Laplacians are ordered as λ1(LG) ≤ · · · ≤ λn(LG). Then
prove that

0 = λ1(LH) = λ1(LG) ≤ λ2(LH) ≤ λ2(LG) ≤ · · · ≤ λn(LH) ≤ λn(LG).

(Aside: one cute application of this theorem is to show that the Petersen
graph is not Hamiltonian by showing that these inequalities are violated
by the spectrum of the Petersen graph and the spectrum of a cycle on 10
vertices (C10), so that C10 is not a subgraph of the Petersen graph.)

2. Prove that the number of spanning trees inKn, the complete graph on n vertices,
is nn−2.
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3. Let G1 = (V,E1) and G2 = (V,E2) be two edge-disjoint graphs on the same
vertex set. Let G = (V,E1 ∪ E2).

(a) Prove that the algebraic connectivity of the two graphs is superadditive;
that is,

λ2(LG1) + λ2(LG2) ≤ λ2(LG).

(b) For any graph G, let H be a spanning subgraph of G. Infer that

λ2(LH) ≤ λ2(LG).

4. In this exercise, we’ll look at a different way of bounding the largest eigenvalue
and obtaining an approximation algorithm for the maximum cut problem. Let
λn be the maximum eigenvalue of the normalized Laplacian L, and let y be the
corresponding eigenvector, with maxi |y(i)| ≤ 1. Let OPT denote the number
of edges in a maximum cut, and let S∗ ⊂ V denote the set of vertices associated
with that set, so that |δ(S∗)| = OPT .

(a) Prove that if OPT ≥ (1− ε)|E|, then λn ≥ 2(1− ε).
(b) Suppose we construct a solution x ∈ {−1, 0,+1}n as in Trevisan’s algo-

rithm (that is, pick t ∈ (0, 1] uniform, and let x(i) = −1 if y(i) ≤ −
√
t,

x(i) = 1 if y(i) ≥
√
t, and x(i) = 0 otherwise). Let sets L = {i ∈ V : x(i) =

−1}, R = {i ∈ V : x(i) = 1}, S = L ∪R, and V − S = {i ∈ V : x(i) = 0}.
Prove that for all 0 ≤ β ≤ 1,

E [|δ(L,R)|+ β|δ(S)|] ≥ β(1− β)
∑

(i,j)∈E

(y(i)− y(j))2.

It might help to know Bergström’s inequality, which states that for a, b ≥ 0
and 0 ≤ β ≤ 1,

β(1− β)(a+ b)2 ≤ (1− β)a2 + βb2.

(c) Consider ρ(G) = maxS⊂V ρ(S), where

ρ(S) = max
partition S into L,R

|δ(L,R)|+ 1
2
|δ(S)|

|E(S)|+ |δ(S)|
.

Prove that if λn ≥ 2(1− ε), then

E [|δ(L,R)|+ β|δ(S)|] ≥ 2(1− ε)β(1− β)E [2|E(S)|+ |δ(S)|] .

(d) Set A = 2(1− ε)β(1− β), and restrict 1
2
≤ A + β < 1. Prove that we can

use the algorithm to find an S, L, and R such that

ρ(G) ≥
|δ(L,R)|+ 1

2
|δ(S)|

|E(S)|+ |δ(S)|
≥ 1− 2β

2(1− A− β)
.
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(e) Use the above to find an α-approximation algorithm for the maximum cut
problem for as large an α as you can. Getting α ≥ .529 will result in full
credit. If you can get α > .614, you have a publishable paper.

5. (Not a PS problem, no need to answer). The analysis in the problem above is
unsatisfying in a couple of ways, at least from a pedagogical standpoint. Unlike
the graph parameter β(G) presented in class, the parameter ρ(G) more clearly
seems to have something to do with finding a large cut in the graph. It would
be nice to deal with ρ(G) directly, and prove a Cheeger-style inequality directly
on ρ(G), of the form √

c1λn ≤ ρ(G) ≤ c2λn,

for some constants c1, c2. Perhaps we need to consider a variant ρ′(G) instead,
where

ρ′(G) = max
S⊂V

max
partition S into L,R

|δ(L,R)|+ 1
2
|δ(S)|

vol(S)
,

and show that √
c1λn ≤ ρ′(G) ≤ c2λn.

It would be even nicer if the analysis of this inequality followed that of Trevisan
in some way (e.g. an application of the Cauchy-Schwarz inequality). And finally,
it would be very nice if that analysis could lead to an α-approximation algorithm
for MAX CUT for some constant α > .5. Is any of this possible in a way that
could be presented cleanly?
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