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Lecture 16

Lecturer: David P. Williamson Scribe: Michela Meister

In this lecture, we give a simple, combinatorial algorithm for approximately solving the
Laplacian system LGp = b in nearly linear time. In some sense, the existence of such a
solver is the reason this course exists; it was the first such solver, due to Spielman and
Teng, that started a set of research that motivated this course and others like it.

1 Algorithm

We can give a sketch of the algorithm below. Recall that, given a tree T and a flow f , the
tree-defined potentials are p(r) = 0 for a selected root vertex r and p(i) =

∑
(k,l)∈P (i,r) r(k, l)f(k, l),

where P (i, r) is the directed (i, r) path in T . Recall also that any electrical flow obeys both
the Kirchoff Current Law (KCL, or flow conservation) and the Kirchoff Potential Law
(KPL), which says that

∑
(i,j)∈C r(i, j)f(i, j) = 0 for any directed cycle C. The algorithm

will work by maintaining a flow f that obeys KCL, and will keep picking cycles and fixing
the flow so that it obeys KPL on the cycle.

The algorithm is as follows:

Algorithm 1: Simple Combinatorial Laplacian Solver

Find low-stretch tree T
Find flow f0 in T that satisfies supplies b
Let p0 be the potentials defined by T and f0
for i← 1 to O(stT (G) ln(stT (G)2/ε)) do

Pick e ∈ E − T
Update fi to satisfy KPL on cycle formed by adding e to T
Let fi+1, pi+1 be the resulting flow and tree-defined potentials

return pi

We will use the energy E(fi) =
∑

(i,j)∈E r(i, j)fi(i, j)
2 as a potential function. The

following lemma was proved in a previous lecture.

Lemma 1 For a given b, bT e = 0:

1. The electrical flow f minimizes E(f) among all g that obey flow conservation/KCL.

2. The potentials p for electrical flow f maximize 2bTx − xTLGx among all x ∈ Rn.
Additionally, 2bT p− pTLGp = E(f).

We observed at the time that for a flow f and potentials p, these give us an upper and
a lower bound on the energy of an electrical flow, and we will use these bounds in the

0This lecture is based on a paper by Kelner, Orecchia, Sidford, and Zhu from 2013, https://arxiv.org/
abs/1301.6628.
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algorithm. In particular, for the given resistances r, let f∗ be the optimal electrical flow,
p∗ associated potentials. Then for a flow f that obeys KCL and potentials p, we define the
associated gap between the upper and lower bounds given by the lemma as

gap(f, p) ≡ E(f)− (2bT p− pTLGp),

so for any f that obeys KCL, any potentials p, E(f)− E(f∗) ≤ gap(f, p).
To prove that the algorithm converges to the optimal electrical flow (approximately),

we will ultimately prove two statements. First, we will prove that the energy of the initial
flow is not that far away from the energy of the optimal flow, by showing

E(f0) ≤ stT (G)E(f∗).

Second, we will show that in each iteration the gap is reduced by a factor of approximately
1 − 1

stT (G) . Using these two statements, the flow f obtained after stT (G) ln(stT (G)2/ε)
iterations is such that

E(f)− E(f∗) ≤
(

1− 1

stT (G)

)stT (G) ln(stT (G)2/ε)
stT (G)E(f∗)

≤ ε

stT (G)2
stT (G)E(f∗)

=
ε

stT (G)
E(f∗).

Of course, what we are really after is a proof that the potentials returned by the algo-
rithm are approximately a solution to LGp = b, but we will show later that coming close to
E(f∗) is useful in finding such a p.

2 Analysis

2.1 Decreasing Energy by Fixing KPL on Cycles

Each iteration of the algorithm is to fix KPL on a cycle. Why does this help? We show
that by doing this, the energy decreases. For a directed cycle C, let

∆(C, f) ≡
∑

(i,j)∈C

r(i, j)f(i, j) and R(C) ≡
∑

(i,j)∈C

r(i, j).

If ∆(C, f) 6= 0, then let

f ′(i, j) :=

{
f(i, j)− ε if (i, j) ∈ C
f(i, j) otherwise.

We observe that by decreasing f by ε on each arc around a directed cycle, if KCL was
obeyed previously by f , it is still obeyed for f ′ since the flow into and out of each node i
on the cycle has been decreased by ε. If we want ∆(C, f ′) = 0, this implies that∑

(i,j)∈C

r(i, j)(f(i, j)− ε) = 0 ⇐⇒ ∆(C, f)− εR(C) = 0 ⇐⇒ ε =
∆(C, f)

R(C)
.
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The next lemma proves that the energy of the flow in fact decreases by changing the
flow to obey KPL on cycle C. Note that if ∆(C, f) 6= 0, then −∆(C, f)2 is always negative.

Lemma 2 E(f ′)− E(f) = −∆(C, f)2/R(C).

Proof:

E(f ′)− E(f) =
∑

(i,j)∈C

r(i, j)[(f(i, j)− ε)2 − f(i, j)2]

=
∑

(i,j)∈C

r(i, j)[ε2 − 2εf(i, j)]

= ε2R(C)− 2ε∆(C, f)

=
∆(C, f)2

R(C)
− 2∆(C, f)2

R(C)

=
−∆(C, f)2

R(C)
.

Since we set ε = ∆(C, f)/R(C), the last equation gives the result. �
Recall that we defined ~E to be the set of directed arcs formed by taking the undirected

edges in E and giving each an arbitrary orientation. Let C(i, j) be a directed cycle defined
by taking (i, j) ∈ ~E − T and the directed (j, i) path in T . The next lemma shows that the
gap between our upper bound and our lower bound is extremely related to the amount by
which the energy decreases by fixing KPL on a cycle.

Lemma 3 For tree-defined potentials p,

gap(f, p) =
∑

(i,j)∈ ~E−T

∆(C(i, j), f)2

r(i, j)
.

Proof:

gap(f, p) = E(f)− [2bT p− pTLGp]

=
∑

(i,j)∈ ~E

r(i, j)f(i, j)2 − 2
∑
i∈V

b(i)p(i) +
∑

(i,j)∈ ~E

(p(i)− p(j))2

r(i, j)
.

Observe that, using skew symmetry (that is, that f(i, j) = −f(j, i)),∑
i∈V

b(i)p(i) =
∑
i∈V

p(i)
∑

j:(i,j)∈E

f(i, j) =
∑

(i,j)∈ ~E

f(i, j)(p(i)− p(j)).

If we plug this into the expression for the gap,

gap(f, p) =
∑

(i,j)∈ ~E

[
r(i, j)f(i, j)2 − 2f(i, j)(p(i)− p(j)) +

(p(i)− p(j))2

r(i, j)

]
=

∑
(i,j)∈ ~E

[r(i, j)f(i, j)− (p(i)− p(j))]2/r(i, j). (1)
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For (i, j) ∈ T , by definition of the tree-defined potentials, p(i) − p(j) = r(i, j)f(i, j).
Hence, (i, j) ∈ T does not contribute to the sum in (1).

For (i, j) ∈ ~E − T , let P (i, j) be the directed (i, j)-path in T . Since p(i) − p(j) =∑
(k,l)∈P (i,j) r(k, l)f(k, l),

r(i, j)f(i, j)− (p(i)− p(j)) =
∑

(k,l)∈C(i,j)

r(k, l)f(k, l) = ∆(C(i, j), f).

Using the last expression in (1) finishes the proof. �

2.2 Tree Condition Number

We now take a slight detour to define a useful concept related to the stretch of a tree. The
tree condition number is defined as

τ(T ) ≡
∑

(i,j)∈ ~E−T

R(C(i, j))

r(i, j)
.

Since the tree T is fixed throughout the algorithm, we’ll just use τ ≡ τ(T ). Since the stretch

of (i, j) ∈ T is 1 and that of (i, j) ∈ ~E − T is R(C(i,j))−r(i,j)
r(i,j) , we have that

τ =
∑

(i,j)∈ ~E−T

(stT (i, j) + 1)

= (stT (G)− |T |) + (m− |T |)
= stT (G) +m− 2(n− 1) = Õ(m),

given that we find a tree of stretch Õ(m).

2.3 Main Idea

We can now give the main idea at the heart of the algorithm. In the main loop of the
algorithm, we need to pick some edge to fix KPL on the induced cycle. We sample edge
(i, j) ∈ ~E − T each iteration with probability 1

τ
R(C(i,j))
r(i,j) , where τ = τ(T ). Using the two

lemmas we proved, the expected decrease in energy in each iteration is

∑
(i,j)∈ ~E−T

p(i, j) · ∆(C(i, j), f)2

R(C(i, j))
=

1

τ

∑
(i,j)∈ ~E−T

R(C(i, j))

r(i, j)
· ∆(C(i, j), f)2

R(C(i, j))

=
1

τ

∑
(i,j)∈ ~E−T

∆(C(i, j))2

r(i, j)

=
gap(f, p)

τ
. (2)

Hence, given a flow fi−1, we obtain

E[E(fi)]− E(f∗) ≤
(

1− 1

τ

)
[E(fi−1)− E(f∗)],

and we can decrease the energy by a factor of (1− 1/τ) in each iteration.
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2.4 Bound on Energy of Initial Flow

We have so far one of the two claimed properties. Now we prove the bound on the energy
of the initial flow.

Lemma 4 E(f0)− E(f∗) ≤ (stT (G)− 1)E(f∗).

Proof: We create a flow in the tree T from the optimal flow f∗ in the following way:
For each (k, l) ∈ ~E, we send f∗(k, l) units on the (k, l)-path in T , P (k, l). Then for any
(i, j) ∈ T the flow on the edge (i, j) is ∑

(k,l)∈ ~E:(i,j)∈P (k,l)

f∗(k, l).

We claim that there is a unique flow in T that satisfies the supply vector b. In particular,
if removing the edge (i, j) splits the tree into two sets of vertices S and V − S with i ∈ S,
j ∈ V − S, then f(i, j) =

∑
k∈S b(k). Thus in particular, the flow defined above must be

the same as f0, and so has the same energy as f0. So

E(f0) =
∑

(i,j)∈T

r(i, j)

 ∑
(k,l)∈ ~E:(i,j)∈P (k,l)

f∗(k, l)

2

.

Then, applying Cauchy-Schwarz to vectors

a =

√
r(i, j)

r(k, l)
and b =

√
r(k, l) · f∗(k, l),

we get

E(f0) =
∑

(i,j)∈T

r(i, j)

 ∑
(k,l)∈ ~E:(i,j)∈P (k,l)

f∗(k, l)

2

≤
∑

(i,j)∈T

 ∑
(k,l)∈ ~E:(i,j)∈P (k,l)

r(i, j)

r(k, l)

 ∑
(k,l)∈ ~E:(i,j)∈P (k,l)

r(k, l)f∗(k, l)
2


≤

∑
(i,j)∈T

 ∑
(k,l)∈ ~E:(i,j)∈P (k,l)

r(i, j)

r(k, l)

 E(f∗)

=
∑

(k,l)∈ ~E

 ∑
(i,j)∈P (k,l)

r(i, j)

r(k, l)

 E(f∗)

=
∑

(k,l)∈ ~E

stT (k, l) · E(f∗)

= stT (G) · E(f∗).
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Rearranging terms gives the lemma statement. �
Then it is possible to show that if we run the algorithm for k = τ ln(stT (G)τ/ε) itera-

tions, we get that

E[E(fk)]− E(f∗) ≤
(

1− 1

τ

)k
(stT (G)− 1)E(f∗)

≤ e− ln(stT (G)τ/ε)(stT (G)− 1)E(f∗)

≤ ε

τ
· E(f∗).

3 Running Time

We now analyze the overall running time. We can find a low-stretch tree inO(m log n log logn)
time. It is possible to compute the probability distribution we need in O(m) time; note
that it is the same distribution in each step. We are not explaining how to do this, or how
to sample an edge from the distribution. Also, in each of the O(τ ln(stT (G)τ/ε)) iterations,
we need to update the flow and potentials. If the tree were a balanced binary tree with r at
the root, it is easy to see that we could do update the flow and potentials along the cycle in
O(log n) time; we assert that there exists a data structure that lets our algorithm perform
these updates in O(log n) time.

Thus the total running time is thus Õ(m ln(1/ε)).
The fastest running time known so far for the problem is

O(m
√

log n log log3+δ n log
1

ε
),

for any δ > 0 and is due to Cohen, Kyng, Pachocki, Peng, and Rao from 2014. Note that
this is faster than sorting m numbers!

4 Approximate Potentials

Although we didn’t get to this part in lecture, we include it in the notes for completeness.
We need to show that if we find a flow f whose energy is sufficiently close to that of an
electrical flow, then the corresponding tree-defined potentials are also close to those of the
potentials of the electrical flow. We measure closeness with respect to a particular distance
measure. Let ‖x‖L =

√
xTLGx be the matrix norm with respect to the Laplacian LG.

Then we will prove the following lemma.

Lemma 5 Let p∗ be the potentials for the electrical flow f∗, and let p̂ be the tree-defined
potentials for a flow f̂ such that

E(f̂)− E(f∗) ≤
ε

τ
E(f∗).

Then
‖p̂− p∗‖2L ≤ ε‖p∗‖2L.
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Proof: Using that (p∗)
TLGp∗ = E(f∗), b = LGp∗, and bT = (p∗)

TLG, we see that

‖p̂− p∗‖2L = (p̂− p∗)TLG(p̂− p∗)
= p̂TLGp̂− (p∗)

TLGp̂− p̂TLGp∗ + (p∗)
TLGp∗

= p̂TLGp̂− 2bT p̂+ E(f∗)

= gap(f∗, p̂).

By Equation (2), we know that if f̂ ′ is the result of one more iteration of the algorithm
starting with flow f̂ , then

E(f̂)− E[E(f̂ ′)] =
1

τ
gap(f̂ , p̂).

Thus it follows that

E(f̂)− E(f∗) ≥
1

τ
gap(f̂ , p̂),

so that
gap(f̂ , p̂) ≤ τ

(
E(f̂)− E(f∗)

)
.

Then

‖p̂− p∗‖2L = gap(f∗, p̂)

= gap(f̂ , p̂)−
(
E(f̂)− E(f∗)

)
≤ (τ − 1)

(
E(f̂)− E(f∗)

)
(3)

≤ εE(f∗)

= ε(p∗)
TLGp∗

= ε‖p∗‖2L,

where we use the hypothesis of the theorem in the final inequality. �
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