In this lecture, we continue the proof of Cheeger’s inequality and explore similar bounds on the largest eigenvalue of the normalized Laplacian. Recall that the normalized Laplacian is given by $L = D^{-1/2}L_G D^{-1/2}$, where

$$D^{-1/2} = \begin{pmatrix}
\frac{1}{\sqrt{d(1)}} & 0 & \cdots & 0 \\
0 & \frac{1}{\sqrt{d(2)}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{\sqrt{d(n)}}
\end{pmatrix},$$

and $d(i)$ is the degree of vertex i. When $S \subseteq V$, we define $\delta(S)$ as the set of edges with exactly one endpoint in S, and $\text{vol}(S) = \sum_{i \in S} d(i)$. The conductance of S is defined as

$$\phi(S) = \frac{|\delta(S)|}{\min(\text{vol}(S), \text{vol}(V - S))},$$

and the conductance of G is defined as $\phi(G) = \min_{S \subseteq V} \phi(S)$. Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ denote the eigenvalues of L.

Denote x_2 to be the eigenvector associated with λ_2. Its Raleigh quotient $R(x_2) = \frac{x_2^T L x_2}{x_2^T x_2}$ is simply λ_2. Recall from last time we define $y = (x_2)_+$ meaning $y(i) = \max(0, x_2(i))$ for each i. The support of y, $\text{supp}(y) := \{ i \mid y(i) > 0 \}$, has cardinality less than or equal to $\frac{n}{2}$, by assuming (without loss of generality) x_2 satisfying $|\text{supp}^+(x_2)| \leq |\text{supp}^-(x_2)|$. The support of y, $\text{supp}(y)$, is also nonempty, as x_2 has to be perpendicular to $D^{1/2} e$ where e is the all one vector.

1 Cheeger’s Inequality

Let us now restate the upper bound of Cheeger’s inequality.

Theorem 1 (Cheeger’s inequality, upper bound) We have $\phi(G) \leq \sqrt{2 \lambda_2}$.

Recall we are only dealing with d-regular graph in the proof. We have shown last time that $R(y) \leq R(x_2) = \lambda_2$ (Claim 3 in Lecture 9) and it is then enough for us to find an $S \subset \text{supp}(y)$ such that $\frac{|\delta(S)|}{\text{vol}(S)} \leq \sqrt{2R(y)}$. We state this as a lemma below.

\(^{0}\)This lecture is derived from Lau’s 2012 notes, Week 2, http://appsrv.cse.cuhk.edu.hk/~chi/csc5160/notes/L02.pdf and Lau’s 2015 notes, Lecture 4, https://cs.uwaterloo.ca/~lapchi/cs798/notes/L04.pdf
Lemma 2 Given any nonzero \(y \in \mathbb{R}^n \), if the graph is \(d \)-regular, then there exists an \(S \subset \text{supp}(y) \) such that
\[
\frac{|\delta(S)|}{d|S|} \leq \sqrt{2R(y)}.
\]

Proof: To start, we may assume without loss of generality that \(y(i) \in [-1, 1] \) for each \(i \) as we can divide \(y \) by the largest entry (in magnitude) of it without affecting the Raleigh quotient \(R(y) \) and the support of \(y \).

We shall construct the \(S \) randomly. Let \(S(t) := \{ i \mid |y(i)|^2 > t \} \), where \(t \) is picked uniformly random from \([0, 1]\). Now the expectation of \(|\delta(S(t))|\) is
\[
\mathbb{E}(|\delta(S(t))|) = \sum_{(i,j) \in E} \mathbb{P}(\{ i \in S(t), j \in V - S(t) \} \cup \{ i \in V - S(t), j \in S(t) \})
\]
\[
= \sum_{(i,j) \in E} \mathbb{P}(|y(i)|^2 \leq |y(j)|^2 \text{ or } |y(j)|^2 \leq |y(i)|^2)
\]
\[
= \sum_{(i,j) \in E} ||y(j)||^2 - |y(i)|^2 |
\]
\[
= \sum_{(i,j) \in E} |y(i) - y(j)||y(i) + y(j)|
\]
(1)
\[
\leq \sqrt{\sum_{(i,j) \in E} (y(i) - y(j))^2} \sqrt{\sum_{(i,j) \in E} (y(i) + y(j))^2}
\]
\[
\leq \sqrt{\sum_{(i,j) \in E} (y(i) - y(j))^2} \sqrt{2 \sum_{(i,j) \in E} (y(i)^2 + y(j)^2)}
\]
\[
\leq \sqrt{\sum_{(i,j) \in E} (y(i) - y(j))^2} \sqrt{2 \sum_{i=1}^{n} y(i)^2}
\]

The equality \((a)\) is due to the distribution of \(t \). The inequality \((b)\) uses Cauchy-Schwarz. The inequality \((c)\) uses the fact that \((a + b)^2 \leq 2a^2 + 2b^2\). The last equality \((d)\) is due to that the graph is \(d \)-regular.

The expectation of \(|S(t)|\) is
\[
\mathbb{E}|S(t)| = \sum_{i=1}^{n} \mathbb{P}(i \in V) = \sum_{i=1}^{n} \mathbb{P}(|y(i)|^2 \geq t) = \sum_{i=1}^{n} y(i)^2
\]

Recall that the Raleigh quotient of \(y \) is
\[
R(y) = \frac{y^\top \mathcal{L} y}{y^\top y} = \frac{y^\top L_G y}{dy^\top y} = \frac{\sum_{(i,j) \in E} (y(i) - y(j))^2}{d \sum_{i=1}^{n} y(i)^2}.
\]
Combining pieces, we find that
\[\mathbb{E}[|\delta(S(t))| - \sqrt{2R(y)}|S(t)|d] \leq 0. \]

By considering the assumption \(y \) is not zero, there must be some \(t_0 \) such that \(|S(t_0)| \neq 0 \) and
\[|\delta(S(t_0))| - \sqrt{2R(y)}|S(t_0)|d \leq 0. \]
Rearranging the terms yields the desired inequality. Note that we can find the desired \(t \) simply by trying all \(t = y(i)^2 \) for all \(i \in V \).

□

With this lemma, and consider the \(y \) constructed from \(x_2 \) with \(\text{supp}(y) \leq n/2 \), we see the Cheeger’s inequality for the upper bound is proved.

Last time, we mentioned spectral partitioning (Algorithm 1 in Lecture 9): Sort entries of \(x_2 \) and relabel them and the corresponding vertices so that \(x_2(1) \geq x_2(2) \geq \cdots \geq x_2(n) \), take the sweep cuts for \(i = 1, \ldots, n-1 \), \(S_i = \{1, \ldots, i\} \). Find \(\min_{i=1,\ldots,n} \phi(S_i) \). The construction of the set \(S(t_0) \) for \(y = (x_2)_+ \) in Lemma 2 shows that there is some \(i_0, t_0 \) such that \(S(t_0) = V - S_{i_0} \) and
\[\min_{i=1,\ldots,n} \phi(S_i) \leq \phi(S_{i_0}) = \phi(S(t_0)) \leq \sqrt{2R(y)} \leq \sqrt{2R(x_2)} = \sqrt{2\lambda_2}. \]

2 Bounds on largest eigenvalue

We now turn to analyzing the largest eigenvalues \(\lambda_n \) of the normalized Laplacian. Note that
\[\lambda_n = \max_{x \in \mathbb{R}^n} \frac{x^\top \mathcal{L}x}{x^\top x} = \max_{x \in \mathbb{R}^n} \frac{x^\top D^{-1/2}LGD^{-1/2}x}{x^\top x} = \max_{y \in \mathbb{R}^n} \frac{y^\top L_Gy}{y^\top Dy}, \]
where we take \(y = D^{-1/2}x \). Recall from last time, we have shown \(\lambda_n \leq 2 \). We also claim the following

Claim 3 \(\lambda_n = 2 \) if and only if \(G \) has a bipartite component.

We can easily show the if direction. If \(G \) has a bipartite component \(S \) with sides \(L, R \), define a vector \(y \in \mathbb{R}^n \) as \(y(i) = 1 \) if \(i \in L \), \(y(i) = -1 \) if \(i \in R \) and \(y(i) = 0 \) otherwise.

If \(\delta(A, B) \) denotes the set of edges with one endpoint in \(A \) and another in \(B \), we have
\[\frac{y^\top L_Gy}{y^\top Dy} = \frac{\sum_{(i,j) \in E}(y(i) - y(j))^2}{\sum_{i \in V} d(i)y(i)^2} = \frac{4\delta(L, R)}{\text{vol}(S)} = \frac{2\text{vol}(S)}{\text{vol}(S)} = 2. \]
Now we’ll show a statement stronger than the converse: G has a bipartite component when $\lambda_n = 2$, and has an “almost” bipartite component when λ_n is close to 2. To make this more precise, consider the following quantity

$$\beta(G) = \min_{S \subseteq V} \frac{2|E(L)| + 2|E(R)| + |\delta(S)|}{\text{vol}(S)},$$

for any $S \subset V$, where $E(X)$ denotes the set of edges with both endpoints in X. Note that

$$\frac{2|E(L)| + 2|E(R)| + |\delta(S)|}{\text{vol}(S)} = \frac{\text{vol}(S) - 2|\delta(L, R)|}{\text{vol}(S)}.$$

Alternatively,

$$\beta(G) = \min_{y \in \{-1, 0, 1\}^n} \frac{\sum_{i,j \in E} |y(i) + y(j)|}{\sum_{i \in V} d(i)|y(i)|},$$

by taking $L = \{i : y(i) = 1\}$, $R = \{i : y(i) = -1\}$ and $S = L \cup R$.

Since λ_n is the largest eigenvalue of \mathcal{L}, $\beta_n = 2 - \lambda_n$ is the smallest eigenvalue of $2I - \mathcal{L} = 2I - (I - \mathcal{A}) = I + \mathcal{A}$. Hence

$$\beta_n = \min_{x \in \mathbb{R}^n} \frac{x^\top (I + \mathcal{A})x}{x^\top x} = \min_{x \in \mathbb{R}^n} \frac{x^\top D^{-1/2}(D + \mathcal{A})D^{-1/2}x}{x^\top x} = \min_{y \in \mathbb{R}^n} \frac{y^\top (D + A)y}{y^\top Dy},$$

that is,

$$\beta_n = \min_{y \in \mathbb{R}^n} \frac{\sum_{i,j \in E} (y(i) + y(j))^2}{\sum_{i \in V} d(i)y(i)^2}.$$

Trevisan proves the following very nice analogy to the Cheeger inequality.

Theorem 4 (Trevisan 2009)

$$\frac{1}{2} \beta_n \leq \beta(G) \leq \sqrt{2\beta_n}.$$

Note when $\lambda_n = 2$, then $\beta_n = 2 - \lambda_n$ is zero and hence $\beta(G) = 0$ by the theorem.

This means there is some $S, L, R \subseteq V$ such that $L \cap R = \emptyset$, $S = L \cup R$, and $\text{vol}(S) = 2\delta(L, R)$. This equality simply means S is a bipartite component.

Proof: For the first inequality, simply note that

$$\beta_n = \min_{y \in \mathbb{R}^n} \frac{\sum_{i,j \in E} (y(i) + y(j))^2}{\sum_{i \in V} d(i)y(i)^2} \leq \min_{y \in \{-1, 0, 1\}^n} \frac{\sum_{i,j \in E} (y(i) + y(j))^2}{\sum_{i \in V} d(i)y(i)^2} \leq \min_{y \in \{-1, 0, 1\}^n} \frac{\sum_{i,j \in E} 2|y(i) + y(j)|}{\sum_{i \in V} d(i)y(i)^2} = 2\beta(G),$$

10-4
by noticing that $(y(i) + y(j))^2 \leq 2|y(i) + y(j)|$ for $y(i), y(j) \in \{-1, 0, +1\}$.

For the second inequality, pick $y \in \mathbb{R}^n$ satisfying $\beta_n = \frac{y^\top (D + A)y}{y^\top y}$ and assume that $\max_i y^2(i) = 1$ (if this is not true, scale y accordingly). Choose $t \in [0, 1]$ uniformly at random, and set $x(i) = 1$ if $x(i) \geq \sqrt{t}$, $x(i) = -1$ if $x(i) \leq -\sqrt{t}$ and $x(i) = 0$ otherwise. Next time we will show that

$$\mathbb{E}\left[\sum_{(i,j) \in E} |x(i) + x(j)| - \sqrt{2\beta_n} \sum_{i \in V} d(i)|x(i)| \right] \leq 0.$$

Then if we set $L_t = \{i \in V : x(i) = -1\}$, and $R_t = \{i \in V : x(i) = 1\}$, and $S_t = L_t \cup R_t$, we get that

$$\mathbb{E}[2|E(L_t)| + 2|E(R_t)| + |\delta(S_t)| - \sqrt{2\beta_n} \text{vol}(S_t)] \leq 0,$$

implying that there exists a t such that

$$\frac{2|E(L_t)| + 2|E(R_t)| + |\delta(S_t)|}{\text{vol}(S_t)} \leq \sqrt{2\beta_n},$$

or

$$\beta(G) \leq \sqrt{2\beta_n}.$$

Again, we can find t efficiently by trying all n values where $t = y(i)^2$. Next time we will prove the inequality and use it to get an approximation algorithm for the MAX CUT problem. \hfill \square