
ORIE 6334 Spectral Graph Theory September 20, 2016

Lecture 9
Lecturer: David P. Williamson Scribe: Michael Roberts

In this lecture, we develop and and analyze a randomized approximation algorithm for MAX
CUT. Recall the MAX CUT problem: Given G = (V,E), find S ⊂ V that maximizes δ(S).

Definition 1 (Approximation algorithm) A (randomized) α-approximation algorithm runs in
(randomized) polynomial time and computes a solution with (expected) value within α of the value
of an optimal solution.

Note that there exists an easy randomized algorithm: Flip a coin for each i ∈ V to decide whether
or not i ∈ S. Then

E [|δ(S)|] =
∑

(i,j)∈E

Pr[(i, j) ∈ S] =
1

2
|E| ≥ 1

2
OPT,

where OPT is the value of an optimal solution to Max-Cut on G.
Today, we will show a .529-approximation algorithm due to Trevisan using a combination of this

naive randomized algorithm and Trevisan’s Cheeger-like inequalities.
Recall from the previous lecture that we defined

β(S) = min
(L,R) a partition of S

2|E(L)|+ 2|E(R)|+ |δ(S)|
vol(S)

and
β(G) = min

S⊂V
S 6=∅

β(S).

Let βn is the smallest eigenvalue of I + A, where A is the normalized adjacency matrix of G.
Last time we showed the following.

Theorem 1 (Trevisan 2009)
1

2
βn ≤ β(G) ≤

√
2βn.

We note that the proof was algorithmic; given the eigenvector corresponding to the eigenvalue
βn, the algorithm returns a set S and a partition of S into L and R such that β(S) ≤

√
2βn.

1 Trevisan’s Algorithm for MAX CUT

The main idea of this algorithm is to trade off between two cases:

• If OPT < (1 − ε)|E|, then we get an approximation ratio from the naive random algorithm
that is better than 1/2.

• If OPT ≥ (1− ε)|E|, then we can use Trevisan’s inequality to get a better bound.

For Max Cut S∗, let S = V , L = S∗, R = V − S∗. Suppose that OPT ≥ (1− ε)|E|. Then

β(G) ≤ β(S) =
2|E(S∗)|+ 2|E(V − S∗)|+ |δ(V )|

vol(V )
=

2(|E| − |δ(S∗)|)
2|E|

≤ 2(|E| − (1− ε)|E|)
2|E|

= ε.

0This lecture is derived from Lau, Lecture 4 https://cs.uwaterloo.ca/~lapchi/cs798/notes/L04.pdf.
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Notice that in this case, then, we can infer that βn ≤ 2ε.
So if βn > 2ε, then OPT < (1− ε)|E|. So the naive randomized algorithm finds S such that

E [δ(S)] =
1

2
|E| ≥ OPT

2(1− ε)
.

Thus in this case it is a 1
2(1−ε) - approximation algorithm.

Now suppose that βn ≤ 2ε. We can run the algorithm to find a set S and a partition of S into
L and R such that β(S) is small, namely, at most

√
2βn ≤ 2

√
ε.

Once we have this S, what should we do to find a large cut? In this case, we will attempt to
improve our bounds by making some recursive calls. We recurse our Max-Cut algorithm on V − S,
to find (L′, R′) that partition S − V .
Consider the following two possible cuts of G (presented as partitions on V ):

• (L ∪ L′, R ∪R′)

• (L ∪R′, R ∪ L′)

Notice that every edge in δ(S) either ”stays on the same side”, going from L to L′ or R to R′, or
else ”crosses sides”, going from L to R′ or R to L′. That means that one of the above cuts must
contain at least 1/2 the edges in δ(S). We choose that cut.

Call the size of the cut our algorithm finds on G, ALG(G), and the size of the maximum cut in
G, OPT(G). Then:

ALG(G) ≥ |δ(L,R)|+ 1/2δ(S) + ALG(G− S),

and
OPT(G) ≤ |E(L)|+ |E(R)|+ |δ(L,R)|+ |δ(S)|+ OPT(G− S).

Then
ALG(G)

OPT(G)
≥ min

{
|δ(L,R)|+ 1/2δ(S)

|E(L)|+ |E(R)|+ |δ(L,R)|+ |δ(S)|
,

ALG(G− S)

OPT(G− S)

}
.

Since βn ≤ 2ε, using Trevisan’s inequalities we bound:

2
√
ε ≥ 2|E(L)|+ 2|E(R)|+ |δ(S)|

vol(S)

=
2|E(L)|+ 2|E(R)|+ |δ(S)|

2|E(L)|+ 2|E(R)|+ |δ(S)|+ 2|δ(L,R)|

= 1− |δ(L,R)|
|E(L)|+ |E(R)|+ 1/2|δ(S)|+ |δ(L,R)|

.

Thus

|δ(L,R)|+ 1/2δ(S)

|E(L)|+ |E(R)|+ |δ(L,R)|+ |δ(S)|
≤ |δ(L,R)|
|E(L)|+ |E(R)|+ |δ(L,R)|+ 1/2|δ(S)|

≤ 1− 2
√
ε.

So, we can conclude that

ALG(G)

OPT(G)
≥ min

{
1− 2

√
ε,

ALG(G− S)

OPT(G− S)

}
.

The same must hold true for G−S recursively. But note that for some subgraph of G we consider
in some recursive step, it may be possible that βn ≥ 2ε. Thus we conclude that:

ALG(G)

OPT(G)
≥ min

{
1− 2

√
ε,

1

2(1− ε)

}
.
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These two expressions are equal for ε ≈ .0554, at which point the ratio is about .529. So this is a
.529-approximation algorithm.1

Better analyses were given in Trevisan 2009, which improved the bound to .531, and in Soto
2015, which improved it to .614.

2 Discussion

Goemans, W (1995) gave a .878-approximation algorithm for MAX CUT by using semidefinite
programming (SDP). So why do we care about Trevisan’s spectral algorithm?

• Computing eigenvectors is a lot easier than solving SDP. (Although, Trevisan’s algorithm
makes recursive calls that require recomputing new vectors).

• This method may be more powerful than LP. Chan, Lee, Raghavendra, Steurer FOCS ’13
shows you need superpolynomial-sized LPs to do better than a 1/2-approximation algorithm.
In a forthcoming paper Kothari, Meka and Raghavedra, this result is improved to showing
that exponentially-sized LPs are required to get better than a 1/2-approximation algorithm.

These observations raise some research questions:

• The current bound on the algorithm’s performance doesn’t seem tight - is it?

• Is there a“one-shot” spectral algorithm, one that doesn’t require recursive calls? The recursion
makes it hard to analyze the algorithm, and forces recomputation of eigenvectors.

• Can we apply this algorithm to other problems with a similar structure (called 2-CSP)? For
instance, the MAX DICUT problem (MAX CUT in directed graphs) and the MAX 2SAT
problem have this structure. In the MAX 2SAT problem, we are given n boolean variables
x1, . . . , xn, and some number of clauses with at most two variables (e.g. x̄1, x2 ∨ x̄3, etc.) The
goal is to find a setting of the variables to true or false so as to maximize the total number of
satisfied clauses.

Some progress has been made on this last question.

Definition 2 (Balanced MAX E2SAT) Balanced MAX E2SAT is a subclass of MAX 2SAT in-
stances such that each clause has exactly two literals in it (i.e. variables or their negations) and for
all i, the number of clauses in which xi appears is exactly equal to the number of clauses in which
x̄i appears.

Paul, Poloczek, W (2016) use Trevisan’s algorithm to obtain a .81-approximation algorithm for
Balanced MAX E2SAT, which is better than a .75-approximation algorithm that can be obtained
via a naive randomized algorithm.

3 Other Cheeger-Like Inequalities

We previously claimed that λk(LG) = 0 iff G has at least k connected components, and made a
similar clame for λk(L). So, we may be interested in Cheeger-like inequalities for λ other than λ2.
We define the k-way conductance of a graph G as

φk(G) = min
S1,S2...Sn⊂V
All Si disjoint

max
i
φ(Si).

Some relatively recent papers have proved a bound on the k-way conductance via λk. These in-
equalities are called higher-order Cheeger inequalities.

1Lau, in his lecture notes, attributes this analysis to Nick Harvey.
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Theorem 2 (Lee, Oveis Gharan, Trevisan ’12)

λk
2
≤ φk(G) ≤ O(k2)

√
λk.

The following has also been shown, in which the dependence on k is improved, but the eigenvalue
in the inequality is weakened to be λ2k rather than λk.

Theorem 3 (Lee et al ’12; Louis, Raghavedra, Tetali, Vempala ’12)

φk(G) = O(polylog(k))
√
λ2k.

But it is an open question whether or not one can have both things at once; that is, whether one
can show that

φk(G) = O(polylog(k))
√
λk.

9-4


	Trevisan's Algorithm for MAX CUT
	Discussion
	Other Cheeger-Like Inequalities

