ORIE 6334 Spectral Graph Theory	September 15, 2016
Lecture 8	
Lecturer: David P. Williamson	Scribe: Victor Reis

In this lecture, we continue the proof of Cheeger's inequality and explore similar bounds on the largest eigenvalue of the normalized Laplacian. Recall that the normalized Laplacian is given by $\mathcal{L} = D^{-1/2} L_G D^{-1/2}$, where

$$D^{-1/2} = \begin{pmatrix} \frac{1}{\sqrt{d(1)}} & 0 & \cdots & 0\\ 0 & \frac{1}{\sqrt{d(2)}} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \frac{1}{\sqrt{d(n)}} \end{pmatrix},$$

and d(i) is the degree of vertex i. When $S \subseteq V$, we define $\delta(S)$ as the set of edges with exactly one endpoint in S, and $\operatorname{vol}(S) = \sum_{i \in S} d(i)$. The conductance of S is defined as

$$\phi(S) = \frac{|\delta(S)|}{\min(\text{vol}(S), \text{vol}(V - S))},$$

and the conductance of G is defined as $\phi(G) = \min_{S \subseteq V} \phi(S)$. Finally, let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ denote the eigenvalues of \mathscr{L} .

1 Cheeger's Inequality

Theorem 1 (Cheeger's inequality, upper bound) We have $\phi(G) \leq \sqrt{2\lambda_2}$.

Last time, we showed that, for any vector $y \in \mathbb{R}^n$ with $\sum_{i \in V} d(i)y(i) = 0$, we can find $S_t \subseteq \text{supp}(y) = \{i \in V : y(i) \neq 0\}$ such that $\frac{|\delta(S_t)|}{\text{vol}(S_t)} \leq \sqrt{2R(y)}$, where

$$R(y) = \frac{\sum_{(i,j) \in E} (y(i) - y(j))^2}{\sum_{i \in V} d(i)y(i)^2}.$$

We also saw that $\lambda_2 = \min R(y)$. The issue is that we may have $\operatorname{vol}(S_t) > \operatorname{vol}(V - S_t)$. To fix this, we will modify y so that $\operatorname{vol}(\sup y) \leq m$ (recall that $\operatorname{vol}(V) = 2m$).

The idea is to pick c such that the two sets $\{i: y(i) < c\}$ and $\{i: y(i) > c\}$ both have volume at most m, then find S_t for both of them and take the best one.

⁰This lecture is derived from Lau's 2012 notes, Week 2, http://appsrv.cse.cuhk.edu.hk/~chi/csc5160/notes/L02.pdf and Lau's 2015 notes, Lecture 4, https://cs.uwaterloo.ca/~lapchi/cs798/notes/L04.pdf.

Claim 2 Let z = y - ce, where $e \in \mathbb{R}^n$ is the vector of all ones. Then

- (i) $z^{\top}Dz \ge y^{\top}Dy$.
- $(ii) \ z^{\top} L_G z = y^{\top} L_G y.$
- (iii) Let $z_+(i) = \max(0, z(i))$ and $z_-(i) = \min(0, z(i))$. Then $\min(R(z_+), R(z_-)) \le R(z) \le R(y)$ and $\sup(z_+), \sup(z_-)$ both have volume at most m.

Given the claim, we can finish the proof of Cheeger's inequality. Using the algorithm from last lecture, we find $S_+ \subseteq \text{supp}(z_+)$, $S_- \subseteq \text{supp}(z_-)$ with

$$\min(\phi(S_+), \phi(S_-)) = \min\left(\frac{|\delta(S_+)|}{\operatorname{vol}(S_+)}, \frac{|\delta(S_-)|}{\operatorname{vol}(S_-)}\right) \le \min(\sqrt{2R(z_+)}, \sqrt{2R(z_-)})$$

$$\le \sqrt{2R(y)},$$

so that $\phi(G) \leq \min(\phi(S_+), \phi(S_-)) \leq \min \sqrt{2R(y)} = \sqrt{2\lambda_2}$, as desired.

Proof of claim:

(i) Let $f(c) = (y - ce)^{T} D(y - ce) = \sum_{i \in V} d(i)(y(i) - c)^{2}$.

We have $f'(c) = \sum_{i \in V} (-2y(i)d(i) + 2cd(i)) = 2c \sum_{i \in V} d(i)$, by $\sum_i y(i)d(i) = 0$. Also, $f''(c) = 2 \sum_i d(i) > 0$, so that f is minimized when $f'(c) = 0 \iff c = 0$, so that $z^{\top}Dz \geq y^{\top}Dy$, as desired.

(ii) Indeed,

$$z^{\top} L_G z = \sum_{(i,j)\in E} (z(i) - z(j))^2 = \sum_{(i,j)\in E} ((y(i) - c) - (y(j) - c))^2$$
$$= \sum_{(i,j)\in E} (y(i) - y(j))^2 = y^{\top} L_G y.$$

(iii) Note that

$$z^{\top}Dz = \sum_{i \in V} d(i)z(i)^{2} = \sum_{i \in V} d(i)z_{+}(i)^{2} + \sum_{i \in V} d(i)z_{-}(i)^{2} = z_{+}^{\top}Dz_{+} + z_{-}^{\top}Dz_{-},$$

and

$$z^{\top}L_{G}z > z_{\perp}^{\top}L_{G}z_{+} + z_{-}^{\top}L_{G}z_{-}$$

if we can show that $(z(i) - z(j))^2 \ge (z_+(i) - z_+(j))^2 + (z_-(i) - z_-(j))^2$ for all i, j. This follows since if z(i) and z(j) have the same sign, then clearly $(z(i) - z(j))^2 = (z_+(i) - z_+(j))^2 + (z_-(i) - z_-(j))^2$ (where one of the two terms is zero), while if z(i) and z(j) have opposite signs then

$$(z(i) - z(j))^{2} = z(i)^{2} - 2z(i)z(j) + z(j)^{2}$$

$$\geq z(i)^{2} + z(j)^{2}$$

$$\geq (z_{+}(i) - z_{+}(j))^{2} + (z_{-}(i) - z_{-}(j))^{2},$$

since -2z(i)z(j) is positive in this case. Therefore,

$$R(y) = \frac{y^\top L_G y}{y^\top D y} \ge R(z) = \frac{z^\top L_G z}{z^\top D z} \ge \frac{z_+^\top L_G z_+ + z_-^\top L_G z_-}{z_+^\top D z_+ + z_-^\top D z_-} \ge \min(R(z_+), R(z_-)),$$

and from our choice of c, we have $\operatorname{vol}(z_+) \leq m$ and $\operatorname{vol}(z_-) \leq m$.

Renato Paes Leme and David Applegate observe that the cuts generated by considering the vectors z_+ and z_- correspond to sweep cuts in the original vector y, and so the overall analysis giving the upper bound on $\phi(G)$ can be thought of as analyzing the sweep cuts of y.

2 Bounds on largest eigenvalue

In the last lecture, we proved that $\lambda_n \leq 2$. Note that

$$\lambda_n = \max_{x \in \mathbb{R}^n} \frac{x^\top \mathcal{L} x}{x^\top x} = \max_{x \in \mathbb{R}^n} \frac{x^\top D^{-1/2} L_G D^{-1/2} x}{x^\top x} = \max_{y \in \mathbb{R}^n} \frac{y^\top L_G y}{y^\top D y},$$

where we take $y = D^{-1/2}x$. We also claim the following

Claim 3 $\lambda_n = 2$ if and only if G has a bipartite component.

We can easily show the if direction. If G has a bipartite component S with sides L, R, define a vector $y \in \mathbb{R}^n$ as y(i) = 1 if $i \in L$, y(i) = -1 if $i \in R$ and y(i) = 0 otherwise.

If $\delta(A, B)$ denotes the set of edges with one endpoint in A and another in B, we have

$$\frac{y^{\top} L_G y}{y^{\top} D y} = \frac{\sum_{(i,j) \in E} (y(i) - y(j))^2}{\sum_{i \in V} d(i) y(i)^2} = \frac{4\delta(L,R)}{\text{vol}(S)} = 2.$$

Now we'll show a statement stronger than the converse: G has a bipartite component when $\lambda_n = 2$, and has an "almost" bipartite component when λ_n is close to 2. To make this more precise, consider the quantity

$$\beta(G) = \min_{\substack{S \subseteq V \\ S = \overline{L} \cup R \\ L \cap P = \emptyset}} \frac{2|E(L)| + 2|E(R)| + |\delta(S)|}{\operatorname{vol}(S)},$$

where E(X) denotes the set of edges with both endpoints in X. Alternatively,

$$\beta(G) = \min_{y \in \{-1,0,1\}^n} \frac{\sum_{(i,j) \in E} |y(i) + y(j)|}{\sum_{i \in V} d(i)|y(i)|},$$

where $L = \{i : y(i) = 1\}, R = \{i : y(i) = -1\}$ and $S = L \cup R$.

Since λ_n is the largest eigenvalue of \mathcal{L} , $\beta_n = 2 - \lambda_n$ is the smallest eigenvalue of $2I - \mathcal{L} = 2I - (I - \mathcal{A}) = I + \mathcal{A}$. Hence

$$\beta_n = \min_{x \in \mathbb{R}^n} \frac{x^\top (I + \mathscr{A}) x}{x^\top x} = \min_{x \in \mathbb{R}^n} \frac{x^\top D^{-1/2} (D + \mathscr{A}) D^{-1/2} x}{x^\top x} = \min_{y \in \mathbb{R}^n} \frac{y^\top (D + A) y}{y^\top D y};$$

that is,

$$\beta_n = \min_{y \in \mathbb{R}^n} \frac{\sum_{(i,j) \in E} (y(i) + y(j))^2}{\sum_{i \in V} d(i) y(i)^2}.$$

Trevisan proves the following very nice analogy to the Cheeger inequality.

Theorem 4 (Trevisan 2009)

$$\frac{1}{2}\beta_n \le \beta(G) \le \sqrt{2\beta_n}.$$

Proof: For the first inequality, simply note that

$$\beta_n = \min_{y \in \mathbb{R}^n} \frac{\sum_{(i,j) \in E} (y(i) + y(j))^2}{\sum_{i \in V} d(i)y(i)^2} \le \min_{y \in \{-1,0,1\}^n} \frac{\sum_{(i,j) \in E} (y(i) + y(j))^2}{\sum_{i \in V} d(i)y(i)^2}$$
$$\le \min_{y \in \{-1,0,1\}^n} \frac{\sum_{(i,j) \in E} 2|y(i) + y(j)|}{\sum_{i \in V} d(i)y(i)^2} = 2\beta(G),$$

by noticing that $(y(i) + y(j))^2 \le 2|y(i) + y(j)|$ for $y(i), y(j) \in \{-1, 0, +1\}$.

For the second inequality, pick $y \in \mathbb{R}^n$ satisfying $\beta_n = \frac{y^\top (D+A)y}{y^\top y}$ and assume that $\max_i y^2(i) = 1$ (if this is not true, scale y accordingly). Choose $t \in [0,1]$ uniformly at random, and set x(i) = 1 if $x(i) \geq \sqrt{t}$, x(i) = -1 if $x(i) \leq -\sqrt{t}$ and x(i) = 0 otherwise.

Claim 5
$$\mathbb{E}[|x(i) + x(j)|] \le |y(i) + y(j)| \cdot (|y(i)| + |y(j)|)$$
 for all $(i, j) \in E$.

Proof of claim: Without loss of generality suppose $y(i)^2 \ge y(j)^2$. If y(i), y(j) have the same sign then

$$\mathbb{E}[|x(i) + x(j)|] = 1 \cdot \mathbb{P}[y(j)^2 \le t \le y(i)^2] + 2 \cdot \mathbb{P}[t \le y(j)^2]$$

$$= y(i)^2 + y(j)^2$$

$$\le |y(i) + y(j)| \cdot (|y(i)| + |y(j)|).$$

Otherwise, y(i), y(j) have different signs, so

$$\begin{split} \mathbb{E}[|x(i) + x(j)|] &= 1 \cdot \mathbb{P}[y(j)^2 \le t \le y(i)^2] \\ &= y(i)^2 - y(j)^2 \\ &= (y(i) + y(j))(y(i) - y(j)) \le |y(i) + y(j)| \cdot (|y(i)| + |y(j)|), \end{split}$$

as claimed. \Box

Summing over all $(i, j) \in E$ and using Cauchy-Schwarz gives

$$\mathbb{E}\left[\sum_{(i,j)\in E} |x(i) + x(j)|\right] \leq \sum_{(i,j)\in E} |y(i) + y(j)| \cdot (|y(i)| + |y(j)|)$$

$$\leq \sqrt{\sum_{(i,j)\in E} (y(i) + y(j))^2} \sqrt{\sum_{(i,j)\in E} (|y(i)| + |y(j)|)^2}$$

$$\leq \sqrt{\beta_n} \sum_{i\in V} d(i)y(i)^2 \sqrt{\sum_{(i,j)\in E} 2(y(i)^2 + y(j)^2)}$$

$$= \sqrt{2\beta_n} \sum_{i\in V} d(i)y(i)^2$$

$$= \sqrt{2\beta_n} \mathbb{E}[\sum_{i\in V} d(i)|x(i)|],$$

so that there exists $x \in \{-1, 0, 1\}^n$ with

$$\beta(G) \le \frac{\sum_{(i,j)\in E} |x(i) + x(j)|}{\sum_{i\in V} d(i)|x(i)|} \le \sqrt{2\beta_n},$$

as desired. As with the proof of the Cheeger inequality, we can find such an x easily because there are only n possible different vectors x produced by the algorithm, and these correspond to $t = y(i)^2$ for all $i \in V$.