ORIE 6334 Spectral Graph Theory September 15, 2016

Lecture &
Lecturer: David P. Williamson Scribe: Victor Reis

In this lecture, we continue the proof of Cheeger’s inequality and explore simi-
lar bounds on the largest eigenvalue of the normalized Laplacian. Recall that the

normalized Laplacian is given by . = D~Y2LsD~Y/2, where
1 0 .. 0
d(1)
0 1
D2 — d(2)
0 0 . 1

\/d(n)

and d(7) is the degree of vertex i. When S C V, we define 0(5) as the set of edges
with exactly one endpoint in S, and vol(S) = > . o d(i). The conductance of S is
defined as

9(S)

¢(5) = min(vol(S), vol(V — §))’

and the conductance of G is defined as ¢(G) = mingcy ¢(5). Finally, let Ay < Ay <
- < \, denote the eigenvalues of .Z.

1 Cheeger’s Inequality
Theorem 1 (Cheeger’s inequality, upper bound) We have ¢(G) < /2.

Last time, we showed that, for any vector y € R™ with ) . ., d(i)y(i) = 0, we can

find S; C supp(y) = {i € V : y(i) # 0} such that ‘5 (5¢) |) < v/2R(y), where

Y iperW(@) —y(j))?
Yievd@y(@?®

We also saw that Ay = min R(y). The issue is that we may have vol(S;) > vol(V —5;).
To fix this, we will modify y so that vol(supp(y)) < m (recall that vol(V') = 2m).

The idea is to pick ¢ such that the two sets {i : y(i) < ¢} and {i : y(i) > ¢} both
have volume at most m, then find S; for both of them and take the best one.

R(y) =

OThis lecture is derived from Lau’s 2012 notes, Week 2, http://appsrv.cse.cuhk.edu.hk/~chi/
cscb160/notes/L02.pdf| and Lau’s 2015 notes, Lecture 4, https://cs.uwaterloo.ca/~lapchi/
cs798/notes/L04.pdf.
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Claim 2 Let z =y — ce, where e € R" is the vector of all ones. Then
(i) 2" Dz >y Dy.
(ii) 2" Lgz =y ' Lay.
(iii) Let z (i) = max(0,2(i)) and z_(i) = min(0, 2()). Then min(R(z,), R(z_)) <
R(z) < R(y) and supp(zy),supp(z_) both have volume at most m.

Given the claim, we can finish the proof of Cheeger’s inequality. Using the algo-
rithm from last lecture, we find S, C supp(z;), S— C supp(z_) with

min(6(S4), 6(S_)) = min ('51(@)) 'ﬂ(fg))) < min(y/2R(,), v2R(=))

< V2R(y),
so that ¢(G) < min(¢(Sy), ¢(S_)) < min+/2R(y) = v/2)g, as desired.

Proof of claim:

(i) Let f(c) = (y —ce) T D(y — ce) = 3,0y d(i)(y(i) — ¢)*.

We have £/(c) = Yoy (~29(0)d(i) + 20d()) = 2 Ssey d(i), by Yyl
Also, f"(c) =25 ,d(i) > 0, so that f is minimized when f'(¢c) =0 <= ¢ =
that 2" Dz > y" Dy, as desired.

0.

, SO

~—
=

(77) Indeed,
loz= Y (i) = =)= Y (y(i) =) = (y(j) — )’
(i,j)eE
= > () -y
(i,J)eE

(i,7)EFE

)=y Lay.

(7i7) Note that
2"Dzx = d(i)z(i)> = _d(i)z4(i)* + > d(i)2_(i)* = [ Dz, + 2 Dz,
eV eV eV
and
2 Loz > ZILG,Z+ + zILGz_,
if we can show that (2(i) — 2(j))* > (24.(1) — 2:.(4))* + (2-(1) — 2_(4))? for all 4, 5.

This follows since if z(i) and z(j) have the same sign, then clearly (z(i) — z(j))? =

(2 (4) — 24:.(4))? + (2—(1) — 2_(4j))? (where one of the two terms is zero), while if 2 (i)
and z(j) have opposite signs then

(2(i) — 2(5))* = 2(1)* — 22(1)2(5) + 2(5)"
> 2(i)* + 2(5)*
> (24 (1) = 24.(3)* + (2= (1) — 2-(5))*,
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since —22z(i)z(7) is positive in this case. Therefore,

T T T T
y' Lay 2'Lgz _ 2y Lgzy + 2z Lgz_ .
R = = > R R —_
) y' Dy — (2) 2"Dz = 2Dz +z'Dz — min(R(zy), £(2-)),
and from our choice of ¢, we have vol(zy) < m and vol(z_) < m. O

Renato Paes Leme and David Applegate observe that the cuts generated by con-
sidering the vectors z, and z_ correspond to sweep cuts in the original vector y, and
so the overall analysis giving the upper bound on ¢(G) can be thought of as analyzing
the sweep cuts of y.

2 Bounds on largest eigenvalue
In the last lecture, we proved that A\, < 2. Note that

r Lax x ' DV2La D2y y' Loy

= Imax T = Imax

A, = max

zeRn 1w zERM rlx yeRr yT Dy’

where we take y = D~2z. We also claim the following
Claim 3 )\, = 2 if and only if G has a bipartite component.

We can easily show the if direction. If G' has a bipartite component S with sides L, R,
define a vector y € R" as y(i) = 1if i € L, y(i) = —1 if i € R and y(i) = 0 otherwise.

If 0(A, B) denotes the set of edges with one endpoint in A and another in B, we
have

y' Lay B Z(i,j)eE(y(i) —y(4))° _46(L,R) 5
yT Dy Y oiev A(@)y(7)? vol(.S) '
Now we’ll show a statement stronger than the converse: G has a bipartite com-

ponent when )\, = 2, and has an “almost” bipartite component when A, is close to
2. To make this more precise, consider the quantity

_ . 2[E(L)|[+2|E(R)|[ + [6(5)]
AlG) = min vol(S) ’

S=LUR

LNR=0

where E(X) denotes the set of edges with both endpoints in X. Alternatively,

—  min Z(i,j)eE ly(i) +y(5)]
= ve(-Loy 3y d(@)]y()]

where L = {i:y(i) =1}, R={i:y(i) = —1} and S = LUR.
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Since )\, is the largest eigenvalue of .Z, 8, = 2 — \,, is the smallest eigenvalue of
2 - £ =21 — (I — /) =1+ o/. Hence

5, = min o' (I+ o) min t"DVA(D+ o)D V2 min y (D+ Ay
" eRn x'x  zeRn xlx ~yerr  yTDy
that is
8, = min Z(i,j)eE(y(i) +y(j))?

yeRT ) ey d(i)y(i)?
Trevisan proves the following very nice analogy to the Cheeger inequality.

Theorem 4 (Trevisan 2009)

260 < B(G) < V250,

Proof: For the first inequality, simply note that

ﬁ__mmELMEﬂM®+yUD2< - Y iper(@) +y(5))?
tooyern Y d(y(i)? T vet-tonr Y0y, d(i)y(i)?
i >iper 2ly(@) +y()]
ye{-1013n Doy d(@)y(i)?
by noticing that (y(i) +y(5))* < 2Jy(i) +y(5)| for y(i),y(j) € {~1,0,+1}.

For the second inequality, pick y € R"™ satisfying (3, = T(yTy )Y and assume that

max; y*(¢) = 1 (if this is not true, scale y accordingly). Choose t € [0, 1] uniformly
at random, and set x(i) = 1 if 2(i) > v, (i) = —1 if (i) < —/t and z(i) = 0

otherwise.

Claim 5 E[x(i) +=(5)[] < |y(@) +y ()] - (w@)] + [y(G)]) for all (i, ) € E.

Proof of claim: Without loss of generality suppose y(i)? > y(5)2. If y(i),y(5)
have the same sign then

[|x()+x(3)!]=1 Ply(5)* <t <y(i)*]+2- Pt < y(j)*]
y(i)* +y(5)°
<!y() y()] - (y@)] =+ lyG)I)-

Otherwise, y(i), y(j) have different signs, so

Ellz(i) + ()l = 1- Ply(j)* < t < y(i)*]
=y(i)* —y(j)’

= (y(i) +y(i) (@) —y(4) < ly@) +yG) - (y@)] + ly()D),

< = 2B3(G),
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as claimed. m
Summing over all (i, 7) € E and using Cauchy-Schwarz gives

E| > le@+a()| < > @) +y()l- (y@)] + ly())

(i,5)eE (i,j)€E

>y > (@) + ly(i)))?

(i,J)eE (¢,5)EE

B> d(i)y(i)? | > 2 (4)%)

eV (i,5)EE
= /20, Z d(i)y(i)
1%

= V/2B,E[>_ d(i)|z(i)|]

eV

so that there exists x € {—1,0,1}" with

S per 1500 + 2(0)
A= R =Y

as desired. As with the proof of the Cheeger inequality, we can find such an x easily
because there are only n possible different vectors x produced by the algorithm, and
these correspond to t = y(i)? for all i € V. O
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