| ORIE 6334 | Spectral | Graph | Theory | |-----------|----------|-------|--------| |-----------|----------|-------|--------| September 8, 2016 Lecture 6 Lecturer: David P. Williamson Scribe: Faisal Alkaabneh ## 1 The Matrix-Tree Theorem In this lecture, we continue to see the usefulness of the graph Laplacian, and its connection to yet another standard concept in graph theory, that of a spanning tree. Let A[i] be the matrix A with its i^{th} column and row removed. We will give two different proofs of the following. Theorem 1 (Kirchhoff's Matrix-Tree Theorem) $det(L_G[i])$ gives the number of spanning trees in G (for any i). In order to do the first proof, we need to use the following fact. **Fact 1** Let E_{ii} be a matrix with 1 in the $(i,i)^{th}$ entry and 0s elsewhere. Then $$\det(A + E_{ii}) = \det(A) + \det(A[i]).$$ If you think about a determinant as being the sum over all permutations of the products of the entries corresponding to the permutation, the fact makes sense: we've increased the (i, i) entry, a_{ii} , to $(a_{ii} + 1)$, and we can think about each permutation that uses the (i, i) entry either multiplying by a_{ii} (in which case we just get $\det(A)$ or by the 1, in which case, we get the sum over all the permutations that avoid the ith row and column, or $\det(A[i])$. **Proof of Theorem 1:** Our first proof will be by induction on the number of vertices and edges of graph G. Base case: G is an empty graph of two vertices, then $$L_G = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right],$$ so that $L_G[i] = [0]$ and $det(L_G[i]) = 0$. <u>Inductive step</u>: Suppose there exists e = (i, j) incident in i. If there is not and i is an isolated vertex, then there are zeros along i^{th} row and column of L_G . Then $\det(L_G[i]) = \det(L_{G-i}) = 0 = \prod_{i=1}^n \lambda_i$ and, as we showed previously, $\lambda_1 = 0$ for any ⁰This lecture is derived from Cvetković, Rowlinson, and Simić, An Introduction to the Theory of Graph Spectra, Sections 7.1 and 7.2, and Godsil and Royle, Algebraic Graph Theory, Section 13.2. L_G . Note also that the number of spanning trees is 0 if i is isolated, so the theorem holds in this case. Now we introduce some notations. Let $\tau(G)$ is the number of spanning trees in G, let G - e be G with edge e removed, and G/e be G with edge e contracted. See below for an illustration of graph contraction. After contraction For any spanning tree T, either $e \in T$ or $e \notin T$. We note that $\tau(G/e)$ gives the number of trees T with $e \in T$, while $\tau(G-e)$ gives the number of trees T with $e \notin T$. Thus $$\tau(G) = \tau(G \backslash e) + \tau(G - e);$$ note that the first term is G with one fewer edge, while the second has one fewer vertex, and so these will serve as the basis of our induction. First we try to relate L_G to L_{G-e} , and we observe that $L_G[i] = L_{G-e}[i] + E_{jj}$ (that is, if we remove edge e, then the only difference in the matrix $L_G[i]$ is that we have to correct for the change in degree of j). Then by the Fact 1 $$\det(L_G[i]) = \det(L_{G-e} + E_{jj})$$ $$= \det(L_{G-e}[i]) + \det(L_{G-e}[i,j])$$ $$= \det(L_{G-e}[i]) + \det(L_G[i,j]),$$ where by $L_G[i, j]$ we mean L_G with both the *i*th and *j*th rows and columns removed; the last equality follows since once we've removed both the *i*th and *j*th rows and columns there's no difference between L_G and L_{G-e} for e = (i, j). Now to relate L_G to $L_{G/e}$. Suppose we contract i onto j (so that $L_{G/e}$ has no row/column corresponding to i). Then $L_{G/e}[j] = L_G[i, j]$. Thus we have that $$\det(L_G[i]) = \det(L_{G-e}[i]) + \det(L_{G/e}[j]) = \tau(G-e) + \tau(G/e) = \tau(G).$$ where the second equation follows by induction; this completes the proof. \Box For the second proof of the theorem, we need the following fact which explains how to take the determinant of the product of rectangular matrices. Fact 2 (Cauchy-Binet Formula) Let $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{m \times n}$, for $m \geq n$. Let A_S (respectively B_S) be submatrices formed by taking the columns (respectively rows) indexed by $S \subseteq [m]$ of A (respectively B). Let $\binom{[m]}{n}$ be the set of all size n subsets of [m]. Then $$\det(AB) = \sum_{S \in \binom{[m]}{n}} \det(A_S) \det(B_S).$$ Recall that $L_G = \sum_{(i,j)\in E} (e_i - e_j)(e_i - e_j)^T$. Thus we can write $L_G = BB^T$ where $B \in \mathbb{R}^{m \times n}$ has one column of B per edge (i,j), with the column $(e_i - e_j)$. Since we can write $L_G = BB^T$, this is yet another proof that L_G is positive semidefinite. Then if B[i] denotes B with its i^{th} row omitted, then $L_G[i] = B[i]B[i]^T$. We let $B_S[i]$ denote B[i] with just the columns of $S \subseteq E$. We need the following lemma, whose proof we defer for a moment. **Lemma 2** For $S \subseteq E$, |S| = n - 1, $|det(B_S[i])| = 1$ if S is a spanning tree, θ otherwise. The second proof of the matrix-tree theorem now becomes very short. #### Proof of Theorem 1: $$\det(L_G[i]) = \det(B[i]B[i]^T)$$ $$= \sum_{S \in \binom{E}{n-1}} (\det(B_S[i]))(\det(B_S[i]))$$ $$= \tau(G),$$ where the second equation follows by the Cauchy-Binet formula, and the third by Lemma 2. \Box We can now turn to the proof of the lemma. **Proof of Lemma 2:** Assume that the edges in $B_S[i]$ are "directed" however we want; that is, we can change the column corresponding to (i, j) from $e_i - e_j$ to $e_j - e_i$, since this only flips the sign of the determinant. If $S \subseteq E$, |S| = n - 1, and S is not a spanning tree, then it must contain a cycle. We direct edges around the cycles. If we then sum the columns of $B_S[i]$ corresponding to the cycle, we obtain the 0 vector, which implies that the columns of $B_S[i]$ are linearly dependent, and thus $\det(B_S[i]) = 0$. Now we suppose that S is a spanning tree; we prove the lemma statement by induction on n. Base case n=2. Then $$B_S = \begin{bmatrix} 1 \\ -1 \end{bmatrix},$$ so that $B_S[i] = \pm 1$, and thus $\det(B_S[i] = 1)$. <u>Inductive case:</u> Suppose the lemma statement is true for graphs of size n-1. Let j leaf of the tree $j \neq i$. Let (k, j) be edge incident on j. We exchange rows/columns so that (k, j) is last column, and j is last row; this may flip sign of determinant, but that doesn't matter. Then $$B_S[i] = \begin{bmatrix} (k,j) & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \dots & 0 & -1 \end{bmatrix}$$ Thus if we expand the determinant along the last row we get $$|\det(B_S[i])| = |\det(B_{S-\{(k,j)\}}[i])| = 1.$$ The last equality follows by induction since $S - \{(k, j)\}$ is a tree on the vertex set without j, since we assumed that j is a leaf. # 2 Consequences of the Matrix-Tree Theorem Once we have the matrix-tree theorem, there are a number of interesting consequences, which we explore in this section. Given a square matrix $A \in \mathbb{R}^{n \times n}$, let A_{ij} be matrix without row i column j (so $A[i] = A_{ii}$). Let $C_{ij} = (-1)^{i+j} \det(A_{ij})$ be the i, j cofactor of A. Then we define the adjugate adj(A) as the matrix with i, j entry C_{ji} . We will need the following fact. ### Fact 3 $$A \operatorname{adj}(A) = \det(A)I.$$ By the matrix-tree theorem, the (i, i) cofactor of L_G is equal to $\tau(G)$. But we can say something even stronger. **Theorem 3** Every cofactor of L_G is $\tau(G)$, so that $$\operatorname{adj}(L_G) = \tau(G)J.$$ ### **Proof:** If G is not connected, then $\tau(G) = 0$ and $\lambda_2(L_G) = 0 = \lambda_1(L_G)$. So the rank of L_G rank is at most n-2. Then $\det((L_G)_{ij}) = 0$, which implies that $\operatorname{adj}(L_G) = 0$, as desired. If G is connected, since $\det(L_G) = 0$, by the fact above $L_G \operatorname{adj}(L_G) = 0$ (i.e. the zero matrix). Because G is connected, multiples of e are the only eigenvectors of L_G with eigenvalue of 0. Thus every column of $\operatorname{adj}(L_G)$ must be some multiple of e. But we know that for the ith column of $\operatorname{adj}(L_G)$, its ith entry is $\tau(G)$, so the column itself must be $\tau(G)e$, and the lemma statement follows. We conclude with one more theorem. **Theorem 4** Let $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_n$ be the eigenvalues of L_G . Then $$\tau(G) = \frac{1}{n} \prod_{i=2}^{n} \lambda_i.$$ **Proof:** The theorem is true if G is not connected, since then $\lambda_2 = 0$ and $\tau(G) = 0$. Otherwise, we will look at linear term of the characteristic polynomial in two different ways. In the first way, the characteristic polynomial is $$(\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_n) = \lambda(\lambda - \lambda_2)(\lambda - \lambda_3)...(\lambda - \lambda_n),$$ so the linear term is $$(-1)^{n-1} \prod_{i=2}^{n} \lambda_i.$$ For the second way, we want the linear term of $\det(\lambda I - L_G)$; the matrix looks like the following: $$\begin{pmatrix} \lambda - d(1) & -L_G \\ \ddots & \\ -L_G & \ddots \\ \lambda - d(n) \end{pmatrix}$$ If we think about the determinant as the sum over all permutations of the products of the entries corresponding to the permutation, then we get a linear term in λ whenever an (i,i) term is part of the permutation, but no other diagonal entries are part of the permutation; also, if the (i,i) term is part of the permutation then no other entry from row and column i is part of the permutation. Finally, since all the other entries are negations of their entry in L_G , we get that if we have a linear term in λ because we include the (i,i) term of the matrix as part of the permutation, the linear term is $(-1)^{n-1} \det(L_G[i])$. Summing over all (i,i) entries, the linear term of λ in $\det(\lambda I - L_G)$ is $$(-1)^{n-1} \sum_{i=1}^{n} \det(L_G[i]) = (-1)^{n-1} \cdot n \cdot \tau(G).$$ 6-5 Thus we have that $\tau(G) = \frac{1}{n} \prod_{i=2}^{n} \lambda_i$.