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1 The Matrix-Tree Theorem

In this lecture, we continue to see the usefulness of the graph Laplacian, and its
connection to yet another standard concept in graph theory, that of a spanning tree.
Let A[i] be the matrix A with its ith column and row removed. We will give two
different proofs of the following.

Theorem 1 (Kirchhoff’s Matrix-Tree Theorem) det(LG[i]) gives the number of
spanning trees in G (for any i).

In order to do the first proof, we need to use the following fact.

Fact 1 Let Eii be a matrix with 1 in the (i, i)th entry and 0s elsewhere. Then

det(A+ Eii) = det(A) + det(A[i]).

If you think about a determinant as being the sum over all permutations of the
products of the entries corresponding to the permutation, the fact makes sense: we’ve
increased the (i, i) entry, aii, to (aii + 1), and we can think about each permutation
that uses the (i, i) entry either multiplying by aii (in which case we just get det(A)
or by the 1, in which case, we get the sum over all the permutations that avoid the
ith row and column, or det(A[i]).

Proof of Theorem 1: Our first proof will be by induction on the number of
vertices and edges of graph G.

Base case: G is an empty graph of two vertices, then

LG =

[
0 0
0 0

]
,

so that LG[i] = [0] and det(LG[i]) = 0.
Inductive step: Suppose there exists e = (i, j) incident in i. If there is not and

i is an isolated vertex, then there are zeros along ith row and column of LG. Then
det(LG[i]) = det(LG−i) = 0 =

∏n
i=1 λi and, as we showed previously, λ1 = 0 for any

0This lecture is derived from Cvetković, Rowlinson, and Simić, An Introduction to the Theory of
Graph Spectra, Sections 7.1 and 7.2, and Godsil and Royle, Algebraic Graph Theory, Section 13.2.
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LG. Note also that the number of spanning trees is 0 if i is isolated, so the theorem
holds in this case.

Now we introduce some notations. Let τ(G) is the number of spanning trees in
G, let G − e be G with edge e removed, and G/e be G with edge e contracted. See
below for an illustration of graph contraction.

i j

Before contraction After contraction

ij

For any spanning tree T , either e ∈ T or e 6∈ T . We note that τ(G/e) gives the
number of trees T with e ∈ T , while τ(G−e) gives the number of trees T with e 6∈ T .
Thus

τ(G) = τ(G\e) + τ(G− e);
note that the first term is G with one fewer edge, while the second has one fewer
vertex, and so these will serve as the basis of our induction.

First we try to relate LG to LG−e, and we observe that LG[i] = LG−e[i]+Ejj (that
is, if we remove edge e, then the only difference in the matrix LG[i] is that we have
to correct for the change in degree of j). Then by the Fact 1

det(LG[i]) = det(LG−e + Ejj)

= det(LG−e[i]) + det(LG−e[i, j])

= det(LG−e[i]) + det(LG[i, j]),

where by LG[i, j] we mean LG with both the ith and jth rows and columns removed;
the last equality follows since once we’ve removed both the ith and jth rows and
columns there’s no difference between LG and LG−e for e = (i, j).

Now to relate LG to LG/e. Suppose we contract i onto j (so that LG/e has no
row/column corresponding to i). Then LG/e[j] = LG[i, j].

Thus we have that

det(LG[i]) = det(LG−e[i]) + det(LG/e[j])

= τ(G− e) + τ(G/e) = τ(G).

where the second equation follows by induction; this completes the proof. �

For the second proof of the theorem, we need the following fact which explains
how to take the determinant of the product of rectangular matrices.
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Fact 2 (Cauchy-Binet Formula) Let A ∈ Rn×m, B ∈ Rm×n, for m ≥ n. Let
AS (respectively BS) be submatrices formed by taking the columns (respectively rows)
indexed by S ⊆ [m] of A (respectively B).

Let
(
[m]
n

)
be the set of all size n subsets of [m]. Then

det(AB) =
∑

S∈([m]
n )

det(AS) det(BS).

Recall that LG =
∑

(i,j)∈E(ei− ej)(ei− ej)T . Thus we can write LG = BBT where

B ∈ Rm×n has one column of B per edge (i, j), with the column (ei − ej). Since
we can write LG = BBT , this is yet another proof that LG is positive semidefinite.
Then if B[i] denotes B with its ith row omitted, then LG[i] = B[i]B[i]T . We let BS[i]
denote B[i] with just the columns of S ⊆ E.

We need the following lemma, whose proof we defer for a moment.

Lemma 2 For S ⊆ E, |S| = n − 1, |det(BS[i])| = 1 if S is a spanning tree, 0
otherwise.

The second proof of the matrix-tree theorem now becomes very short.

Proof of Theorem 1:

det(LG[i]) = det(B[i]B[i]T )

=
∑

S∈( E
n−1)

(det(BS[i]))(det(BS[i]))

= τ(G),

where the second equation follows by the Cauchy-Binet formula, and the third by
Lemma 2. �

We can now turn to the proof of the lemma.

Proof of Lemma 2: Assume that the edges in BS[i] are “directed” however we
want; that is, we can change the column corresponding to (i, j) from ei−ej to ej−ei,
since this only flips the sign of the determinant.

If S ⊆ E, |S| = n − 1, and S is not a spanning tree, then it must contain a
cycle. We direct edges around the cycles. If we then sum the columns of BS[i]
corresponding to the cycle, we obtain the 0 vector, which implies that the columns of
BS[i] are linearly dependent, and thus det(BS[i]) = 0.

Now we suppose that S is a spanning tree; we prove the lemma statement by
induction on n.

Base case n = 2. Then

BS =

[
1
−1

]
,
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so that BS[i] = ±1, and thus det(BS[i] = 1).
Inductive case: Suppose the lemma statement is true for graphs of size n−1. Let

j leaf of the tree j 6= i. Let (k, j) be edge incident on j. We exchange rows/columns
so that (k, j) is last column, and j is last row; this may flip sign of determinant, but
that doesn’t matter. Then

BS[i] =

(k, j)
0
0
1
0

0 . . . 0 −1


Thus if we expand the determinant along the last row we get

| det(BS[i])| = | det(BS−{(k,j)}[i])| = 1.

The last equality follows by induction since S − {(k, j)} is a tree on the vertex set
without j, since we assumed that j is a leaf. �

2 Consequences of the Matrix-Tree Theorem

Once we have the matrix-tree theorem, there are a number of interesting consequences,
which we explore in this section. Given a square matrix A ∈ Rn×n, let Aij be matrix
without row i column j (so A[i] = Aii). Let Cij = (−1)i+j det(Aij) be the i, j cofactor
of A. Then we define the adjugate adj(A) as the matrix with i, j entry Cji. We will
need the following fact.

Fact 3
A adj(A) = det(A)I.

By the matrix-tree theorem, the (i, i) cofactor of LG is equal to τ(G). But we can
say something even stronger.

Theorem 3 Every cofactor of LG is τ(G), so that

adj(LG) = τ(G)J.

Proof:
If G is not connected, then τ(G) = 0 and λ2(LG) = 0 = λ1(LG). So the rank of

LG rank is at most n− 2. Then det((LG)ij) = 0, which implies that adj(LG) = 0, as
desired.
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If G is connected, since det(LG) = 0, by the fact above LG adj(LG) = 0 (i.e. the
zero matrix). Because G is connected, multiples of e are the only eigenvectors of LG
with eigenvalue of 0. Thus every column of adj(LG) must be some multiple of e. But
we know that for the ith column of adj(LG), its ith entry is τ(G), so the column itself
must be τ(G)e, and the lemma statement follows. �

We conclude with one more theorem.

Theorem 4 Let 0 = λ1 ≤ λ2 ≤ ... ≤ λn be the eigenvalues of LG. Then

τ(G) =
1

n

n∏
i=2

λi.

Proof: The theorem is true if G is not connected, since then λ2 = 0 and τ(G) = 0.
Otherwise, we will look at linear term of the characteristic polynomial in two

different ways. In the first way, the characteristic polynomial is

(λ− λ1)(λ− λ2)...(λ− λn) = λ(λ− λ2)(λ− λ3)...(λ− λn),

so the linear term is

(−1)n−1
n∏
i=2

λi.

For the second way, we want the linear term of det(λI − LG); the matrix looks like
the following: 

λ−d(1)
...

−LG

−LG ...
λ−d(n)


If we think about the determinant as the sum over all permutations of the products of
the entries corresponding to the permutation, then we get a linear term in λ whenever
an (i, i) term is part of the permutation, but no other diagonal entries are part of
the permutation; also, if the (i, i) term is part of the permutation then no other
entry from row and column i is part of the permutation. Finally, since all the other
entries are negations of their entry in LG, we get that if we have a linear term in λ
because we include the (i, i) term of the matrix as part of the permutation, the linear
term is (−1)n−1 det(LG[i]). Summing over all (i, i) entries, the linear term of λ in
det(λI − LG) is

(−1)n−1
n∑
i=1

det(LG[i]) = (−1)n−1 · n · τ(G).

Thus we have that τ(G) = 1
n

∏n
i=2 λi.

�

6-5


	The Matrix-Tree Theorem
	Consequences of the Matrix-Tree Theorem

