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1 Graph Laplacians

Let’s let ei ∈ {0, 1}n be the standard basis vectors (1 in the i-th coordinate, 0’s else
where).

A Laplacian of an undirected graph G = (V,E),

LG =
∑

(i,j)∈E

(ei − ej)(ei − ej)T .

Each term (ei− ej)(ei− ej)T is an |V | × |V | matrix that has +1 in the (i, i) and (j, j)
coordinate, −1 in the (i, j) and (j, i) coordinate and the rest of the entries are all
zero. Now, we define the following notation:

• d(i): degree of i in G.

• D: diag(d(i)) is the |V | × |V | diagonal matrix where D(i, i) = d(i).

• A: Adjacency matrix of graph A.

With this notation we can write LG = D − A.
If G has weights w(i, j),∀(i, j) ∈ E, then the weighted Laplacian,

LG =
∑

(i,j)∈E

w(i, j)(ei − ej)(ei − ej)T .

Define W = (w(i, j)) ∈ <n×n where w(i, j) = 0 if (i, j) /∈ E and D = diag(d(i)),
where d(i) =

∑
(i,j)∈w(i, j). Then LG = D − W . We will sometimes denote this

matrix by LG,w.
An interesting and useful fact is that the Laplacian LG is positive semidefinite.

Let’s briefly remember what this means, as well as some useful facts about such
matrices.

Definition 1 A matrix A ∈ <n×n is positive semidefinite, if xTAx ≥ 0 for all x ∈ <n.
If A is positive semidefinite we write A � 0.

0This lecture is derived from Lau’s 2015 lecture notes, Lecture 2 (https://cs.uwaterloo.ca/

~lapchi/cs798/notes/L02.pdf), Cvetković, Rowlinson, and Simić, An Introduction to the Theory
of Graph Spectra, Section 7.4, and Mohar and Poljak, Eigenvalues in Combinatorial Optimization,
Sections 2.1 and 2.4.
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Given what we know about matrices, the following fact is easy to prove, but we
will skip its proof.

Fact 1 For a symmetric matrix A the following are equivalent:

(i) A � 0.

(ii) A = V V T for some matrix V .

(iii) A has all non-negative eigenvalues.

We can now show that LG is positive semidefinite, which we will do in two different
ways.

Claim 1 LG � 0.

Proof:
First proof:
Note LG is symmetric.
We observe that if A � 0 and B � 0 then A+B � 0, since

xT (A+B)x = xtAx+ xtBx ≥ 0

for all x ∈ <n. Note that by (ii), (ei− ej)(ei− ej)T � 0. So, by summing up all these
terms we will get LG and based on the observation above we can say LG � 0. �
Second proof:
Also we know that for any x ∈ <n,

xTLGx = xT

 ∑
(i,j)∈E

(ei − ej)(ei − ej)T
x

=
∑

(i,j)∈E

xT (ei − ej)(ei − ej)Tx

=
∑

(i,j)∈E

(x(i)− x(j))(x(i)− x(j))

=
∑

(i,j)∈E

(x(i)− x(j))2 ≥ 0.

�
We will usually write the eigenvalues of LG, λ1 ≤ λ2 ≤ · · · ≤ λn and since we

know that LG is positive semi-definite we can write 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn.
What is the spectrum of LG? We observe that e (all 1s vector) is an eigenvector

of eigenvalue 0 for LG, since:

LGe =
∑

(i,j)∈E

(ei − ej)(ei − ej)T e =
∑

(i,j)∈E

(ei − ej · 0 = 0 · e.

Thus λ1 = 0.
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2 Graph Laplacians and Connectivity

Now we switch our focus to λ2, which is much more interesting. We will see a very
close connection between λ2 and various notions of the connectivity of the graph.

Theorem 2 λ2 = 0 iff G is disconnected.

Proof: If G is disconnected then, we can partition it into G1 and G2 such that
there are no edges between G1 and G2. Furthermore, we can re-index the nodes so
that

LG =

[
LG1 0

0 LG2

]
.

Then both vectors 
1
1
.
.
0
0

 and


0
0
.
.
1
1

 .

(where first |VG1| entries of the first vector is 1 and the rest are zero and the opposite
for the second vector) will be eigenvectors of LG and orthogonal to each other. Since
the eigenvalues associated with both vectors are 0, this implies that λ2 = 0.

To see the other direction, let x2 be an eigenvector of eigenvalue λ2. We can
assume 〈x2, e〉 = 0. If λ2 = 0, then xT2Gx2 = xT2 (λ2x2) = 0. So then,

xT2LGx2 =
∑

(i,j)∈E

(x2(i)− x2(j))2 = 0.

The summation of squared real values is 0, therefore each of them is equal to zero.
Therefore, x2(i) = x2(j) for all (i, j) ∈ E. Consider V1 = {i ∈ V : x2(i) ≥ 0} and
V2 = {i ∈ V : x2(i) < 0}. It’s clear there are no edges between V1 and V2. Since
〈x2, e〉 = 0, there should be both positive and negative entries in x2 which proves that
V1 6= ∅ and V2 6= ∅, and hence G has at least two components. �

For this reason λ2 is called the algebraic connectivity of G. The proof above easily
extends to prove the followng.

Claim 3 λk = 0 iff G has at least k components.

We now show another connection between λ2 and the connectivity of the graph
G.

Definition 2 κ(G) is the vertex connectivity of G; it is the smallest nonnegative
integer such that we can remove up to κ(G)− 1 vertices and associated edges from G
and G is still connected.
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We will show the following shortly. Let G − S be the graph that results from
removing the vertices in S from the graph, as well as all edges incident on the vertices
in S.

Lemma 4 λ2(LG) ≤ λ2(LG−S) + |S|, for all S ⊆ V.

Note that we easily get the following corollary.

Corollary 5 λ2(G) ≤ κ(G).

Proof: Let S be a set of vertices of size κ(G) that disconnects G. Then

λ2(G− S) = 0⇒ λ2(G) ≤ 0 + κ(G).

�
Proof of Lemma 4: Let x2 be the eigenvector of LG−S corresponding to
λ2(LG−S), with xT2 x = 1, 〈x2, e〉 = 0.

Then we know

xT2LGx2 =
∑

(i,j)∈E

(x2(i)− x2(j))2 = λ2(LG−S)

for G− S = (V − S,E ′). Note that x2 ∈ <|V |−|S|. We want a vector x ∈ <|V |, so we
let

x(i) =

{
x2(i), if i ∈ S
0, otherwise

.

With this definition x is a unit vector since, xTx = xT2 x2 = 1 and 〈x, e〉 = 〈x2, e〉 = 0.
Then we have that

λ2(LG) = min
z∈<n:〈z,e〉=0

zTLGz

zT z
≤ xTLGx

xTx

= xTLGx

=
∑

(i,j)∈E

(x(i)− x(j))2

=
∑

(i,j)∈E′

(x(i)− x(j))2 +
∑
i∈S

∑
j:(i,j)∈E

(x(i)− x(j))2

=
∑

(i,j)∈E′

(x2(i)− x2(j))2 +
∑
i∈S

∑
j:(i,j)∈E

(x2(j))
2

≤
∑

(i,j)∈E′

(x2(i)− x2(j))2 +
∑
i∈S

1 (x2 has unit norm)

= λ2(LG−S) + |S|.

�
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3 Graph Laplacians and Cuts

We now see that we can get some easy bounds on various types of cuts in graphs by
using the eigenvalues of the Laplacian.

Definition 3 If |V | is even, let b(G) be the smallest bisection of G; that is

b(G) = minS⊂V :|S|=|V−S||δ(S)|,

where δ(S) is the set of edges with one endpoint in S and the other endpoint in V −S.
We say the edges in δ(S) are the edges in the cut defined by S.

Claim 6
n

4
λ2(G) ≤ b(G).

Proof: Let S̄ be an optimal bisection. Let x in{−1,+1}n s.t.

x(i) =

{
−1, if i ∈ S̄
+1, otherwise

.

Recall that

λ2 = minz∈<n,〈z,e〉=0
zTLGz

zT z
.

Note that 〈x, e〉 = 0 since half of the entries of x are −1 and half are +1. Therefore,

λ2 ≤
xTLGx

xTx
=
∑

(i,j)∈E

(x(i)− x(j))2

n
=

1

n
· 4|δ(S̄)| = 4

n
b(G).

�
To conclude the lecture, we turn to the largest eigenvalue of the Laplacian, and

show that it has a connection to large cuts in the graph.

Definition 4 Let mc(G) be the maximum cut in the graph, so that

mc(G) = maxS⊆V |δ(S)|.

Then using the same idea as the proof above, we can show the following.

Claim 7
mc(G) ≤ n

4
λn(LG).
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Proof: Let S̄ be a maximum cut and

x(i) =

{
−1, if i ∈ S̄
+1, otherwise

.

Then,

λn = max
z∈<n

zTLGz

zT z
≥ xTLGx

xTx
=
∑

(i,j)∈E

(x(i)− x(j))2

n
=

4|δ(S̄)|
n

=
4

n
mc(G).

�
In fact, we can modify the bound above to give a tighter bound on the maximum

cut.

Claim 8
mc(G) ≤ n

4
min

u:〈u,e〉=0
λn(LG + diag(u)),

where diag(u) is a diagonal matrix that diag(u)(i, i) = u(i).

Proof: Following the same definition of x as above, we get that

λn(LG + diag(u)) = max
z∈<n

zT (LG + diag(u))z

zT z

≥ xTLGx+ xTdiag(u))x

xTx

=
4mc(G) +

∑
i∈V u(i)x(i)2

n

=
4mc(G)

n
,

since x2(i) = 1 for all i ∈ V , and
∑

i∈V u(i) = 〈u, e〉 = 0. �
This bound on the eigenvalue has a connection to other well-known bounds on the

maximum cut problem. For a given vector u such that 〈u, e〉 = 0, let λ = λn(LG +u).
Define γ(i) = λ− (u(i) + d(i)) for all i ∈ V , where d(i) is the degree of i in G. Then
for adjacency matrix A, we have that

A+ diag(γ) = λI − (LG + u).

Then we can see that A+ diag(γ) � 0 since for any x ∈ <n,

xT (A+ diag(γ))x = xT (λI − (LG + u))x

= λxTx− xT (LG + u)x

≥ xT (LG + u)x− xT (LG + u)x

= 0,

5-6



where the inequality follows since λ ≥ xT (LG + u)x/xTx. Then we observe that

n

4
λ =

1

4

∑
i∈V

(γ(i) + u(i) + d(i))

=
1

4

∑
i∈V

γ(i) +
1

4

∑
i∈V

d(i)

=
1

4

∑
i∈V

γ(i) +
1

2
|E|.

Then finding a u to minimize n
4

minu:〈u,e〉=0 λn(LG+diag(u)) turns out to be equivalent
to finding a γ to minimize

1

4

∑
i∈V

γ(i) +
1

2
|E|,

subject to
A+ diag(γ) � 0.

This is a semidefinite program, and it has a dual semidefinite program of maximizing

1

2

∑
(i,j)∈E

(1− xij)

subject to
xii = 1 for all i ∈ V, X = (xij) � 0.

This semidefinite program is used in a .878-approximation algorithm for the maximum
cut problem due to Goemans and W. Thus one can show that the eigenvalue bound
is a strong one; we also have that

mc(G) ≥ .878 · n
4

min
u:〈u,e〉=0

λn(LG + diag(u)).
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