
ORIE 6334 Spectral Graph Theory December 1, 2016

Lecture 27

Lecturer: David P. Williamson Scribe: Qinru Shi

1 Recap of Previous Lecture

Last time we started to prove the following theorem.

Theorem 1 (Arora, Rao, Vazirani, 2004) There is an O(
√

log n)-approximation algo-
rithm for sparsest cut.

The proof of the theorem uses a SDP relaxation in terms of vectors vi ∈ Rn for all i ∈ V .
Define distances to be d(i, j) ≡ ‖vi − vj‖2 and balls to be B(i, r) ≡ {j ∈ V | d(i, j) ≤ r}.
We first showed that if there exists a vertex i ∈ V such that |B(i, 1/4)| ≥ n/4, then we can
find a cut of sparsity ≤ O(1) ·OPT . If there does not exist such a vertex in V , then we can
find U ⊆ V with |U | ≥ n/2 such that for any i ∈ U , 1/4 ≤ ‖vi‖2 ≤ 4 and there are at least
n/4 vertices j ∈ U such that d(i, j) > 1/4.

Then we gave the ARV algorithm.

Algorithm 1: ARV Algorithm

Pick a random vector r such that r(i) ∼ N(0, 1)
Let L = {i ∈ V : vi · r ≤ −1} and R = {i ∈ V : vi · r ≥ 1}
Find a maximal matching M ⊆ {(i, j) ∈ L×R : d(i, j) ≤ ∆}
Let L′, R′ be the vertices in L,R respectively that remain uncovered
Sort i ∈ V by increasing distance to L′ (i.e. d(i, L′)) to get i1, i2, . . . , in
Let Sk = {i1, . . . , ik} and return S = arg min1≤k≤n−1 ρ(Sk)

Observation 1 At the end of the ARV algorithm, for any i ∈ L′ and j ∈ R′, d(i, j) > ∆.

Assume the matching algorithm gives the same matching for r as for −r. Then, we can
assume that the probability of i being matched if i ∈ L is the same as the probability of i
being matched if i ∈ R.

Next, we stated the following two theorems and proved the first one.

Theorem 2 There exists some constant c′ such that Pr[|L|, |R| ≥ c′n] ≥ c′.

Theorem 3 (Structure Theorem) For ∆ = Ω(1/
√

log n), E[|M |] ≤ ( c
′

2 )2n.

The two theorems imply that with constant probability, |L′|, |R′| ≥ c′

2 n, and d(i, j) ≥ ∆
for all i ∈ L′ and j ∈ R′. We showed that if this is the case, we can then conclude that
the algorithm gives us an O(

√
log n)-approximation. Today we turn to the proof of the

Structure Theorem.
0This lecture is derived from lecture notes of Boaz Barak and David Steurer http://sumofsquares.org/

public/lec-arv.html.
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2 Proof of Structure Theorem

The proof shown in this section is due to Boaz Barak and David Steurer (2016). The original
ARV algorithm gives anO((log n)2/3)-approximation algorithm and needs another algorithm
to reach the guarantee of O(

√
log n). Later, Lee showed that the original ARV algorithm

also gives O(
√

log n)-approximation. Both of these analyses are long and technical. In
2016, Rothvoss gave a somewhat easier proof (https://arxiv.org/abs/1607.00854). Very
recently Barak and Steurer gave a much easier proof, and this is what we will show today.

Recall the proof ideas we talked about last lecture. We know that v
‖v‖ · r ∼ N(0, 1);

from this it is possible to prove a concentration result showing that

Pr[v · r ≥ α] ≤ exp

(
− α2

‖v‖2

)
.

Thus

Pr[(vi − vj) · r ≥ C
√

lnn] ≤ e−
C2 lnn

8 =
1

nC2/8

for any i, j ∈ U , since ‖vi − vj‖2 ≤ 8. Hence, for sufficiently large C, we have

(vi − vj) · r ≤ C
√

lnn

for all i, j ∈ U with high probability. Then one can show that

E[max
i,j∈U

(vi − vj) · r] ≤ C
√

lnn.

For simplicity of notation, we rename vi · r as Xi. Then,

E[max
i,j∈U

(Xi −Xj)] ≤ C
√

lnn.

Next, we will prove the following lemma.

Lemma 4 (Projection Lemma)

Ω(1)

∆

(
E[|M |]
n

)3

≤ E
[

max
i,j∈U

(Xi −Xj)

]
≤ C
√

lnn.

For the rest of the lecture, we will restrict our attention to vertices in U and ignore
anything outside of U ; we let n = |U |, and since |U | ≥ n/2, this only changes the constants
in what we need to prove.

From the Projection Lemma, for the right choice of constants and ∆ = Ω(1/
√

log n), we
get that (

E[|M |]
n

)3

≤

((
c′

2

)2
)3

,

which then proves the Structure Theorem. So the Projection Lemma implies the Structure
Theorem, and we now turn to proving the Projection Lemma.
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Consider a graph H = (U,E′) where E′ = {(i, j) ∈ U × U : d(i, j) ≤ ∆}. Let

H(i, k) = {j ∈ U : j can be reached from i in at most k steps in H}.

Define
Y (i, k) = max

j∈H(i,k)
(Xj −Xi)

Φ(k) =

n∑
i=1

E[Y (i, k)]

where i ranges over all starting points. Then,

1

n
Φ(k) ≤ E

[
max
i,j∈U

(Xi −Xj)

]
.

The idea is that the expectation in the Projection Lemma of E [maxi,j∈U (Xi −Xj)] ranges
over all i, j ∈ U ; what we’ll do here is see how large the difference of Xj −Xi can be if they
are at most k edges apart in the graph H, and we’ll look at what happens as we increment
k. That incrementation happens in the following lemma.

Lemma 5 (Chaining Lemma)

Φ(k + 1) ≥ Φ(k) + 4E[|M |]−O(n) max
i,j∈H(i,k+1)

(
E[(Xi −Xj)

2]
) 1

2

We first show that the Chaining Lemma implies the Projection Lemma. For any vector
x,

E[(x · r)2] = ‖x‖2E

[(
x

‖x‖
· r
)2
]

= ‖x‖2.

since x
‖x‖ · r ∼ N(0, 1). Therefore,

E[(Xi −Xj)
2] = ‖vi − vj‖2 ≤ k∆

by triangle inequality and the fact that each edge (p, q) in H has ‖vp − vq‖2 ≤ ∆. The
Chaining Lemma implies that there exists a constant c̃ such that for any k,

Φ(k + 1) ≥ Φ(k) + 4E[|M |]− c̃n
√
k∆.

Let

k0 =

(
9

c̃2

)(
E[|M |]
n

)2

· 1

∆
.

Then, for any k ≤ k0, we have

Φ(k + 1) ≥ Φ(k) + E[|M |],

which implies that
Φ(k + 1) ≥ (k + 1)E[|M |].
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Thus,

E[max
i,j

(Xi −Xj)
2] ≥ 1

n
Φ(k0) ≥

k0
n
E[|M |]

=

(
9

c̃

)2(E[|M |]
n

)3

· 1

∆
.

Hence, we have shown that the Chaining Lemma implies the Projection Lemma.
Now the remaining step is to prove the Chaining Lemma. We will need the following

two probability results for this proof.

Lemma 6 For any two random variables X and Y ,

|E[XY ]− E[X]E[Y ]| ≤
√

Var[X] Var[Y ]

Theorem 7 (Borell’s Theorem) If Z1, Z2, . . . , Zt have mean 0 and are jointly normally
distributed, then there exists a constant ĉ such that

Var[max(Z1, . . . , Zt)] ≤ ĉmax(Var[Z1], . . . ,Var[Zt]).

Note that in Borell’s Theorem, there’s no dependence on the number of variables t. The
reason why Borell’s Theorem is useful is that for fixed i, (Xi−Xj) for some j ∈ H(i, k) has
mean 0 and are (jointly) normally distributed, so Var[Xj − Xi] = E[(Xj − Xi)

2]. Borell’s
Theorem then says that

Var[Y (i, k)] = Var

[
max

j∈H(i,k)
(Xj −Xi)

]
≤ ĉ max

j∈H(i,k)
Var[Xj −Xi]

= ĉ max
j∈H(i,k)

E[(Xj −Xi)
2]

= ĉ max
j∈H(i,k)

‖vj − vi‖2

≤ ĉ · k∆

We can now turn to the proof of the Chaining Lemma.
Proof of Chaining Lemma: If (i, j) ∈ E′, then H(j, k) ⊆ H(i, k + 1), so if Y (j, k) =
Xh −Xj where h ∈ H(j, k), then

Y (i, k + 1) ≥ Xh −Xi = Y (j, k) +Xj −Xi.

Thus, if (i, j) ∈M ,
Y (i, k + 1) ≥ Y (j, k) + 2 (1)

since Xi ≤ −1 and Xj ≥ 1 given that (i, j) is in the matching.
Let N be an arbitrary pairing of vertices not in M . Then, for any (i, j) ∈ N ,

1

2
Y (i, k + 1) +

1

2
Y (j, k + 1) ≥ 1

2
Y (i, k) +

1

2
Y (j, k). (2)

Now we want to add both sides over all (i, j) ∈ M ∪ N , take expectations and get Φ.
Unfortunately, if we take an expectation, there will be a coefficient in front of Y (i, k) of
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the probability that i is in the matching. To get around this issue, we introduce some new
random variables. Let

Li =


1 if i is matched in M, i ∈ L,
0 if i is matched in M, i ∈ R,
1
2 otherwise

and

Ri =


1 if i is matched in M, i ∈ R,
0 if i is matched in M, i ∈ L,
1
2 otherwise.

Note that E[Li] = E[Ri] = 1
2 since the probability that i is in the matching when i ∈ L is

the same that i is in the matching when i ∈ R. Adding both sides of (1) and (2) over M
and N , we get

n∑
i=1

Y (i, k + 1)Li ≥
n∑
j=1

Y (j, k)Rj + 2|M |. (3)

By Lemma 6,

| E[Y (i, k + 1)Li]− E[Y (i, k + 1)]E[Li] | ≤
√

Var[Y (i, k + 1)] Var[Li]

≤ ĉ max
j∈H(i,k+1)

(
E[(Xj −Xi)

2]
) 1

2 .

Similarly, we have

| E[Y (j, k)Ri]− E[Y (j, k)]E[Ri] |≤ ĉ max
i∈H(j,k)

(
E[(Xj −Xi)

2]
) 1

2 .

Taking expectation of both sides of (3), we get

1

2
Φ(k + 1) ≥ 1

2
Φ(k) + 2E[|M |]− ĉn · max

i,j∈H(i,k+1)

(
E[(Xi −Xj)

2]
) 1

2 ,

which implies that

Φ(k + 1) ≥ Φ(k) + 4E[|M |]− 2ĉn · max
i,j∈H(i,k+1)

(
E[(Xi −Xj)

2]
) 1

2 .

�
We have now proven the Chaining Lemma, which implies Projection Lemma. As we

claimed above, for the right choice of constants and ∆ = Ω(1/
√

log n) , we get that

(
E[|M |]
n

)3

≤

((
c′

2

)2
)3

,

which then proves the Structure Theorem.
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Research Questions:

• Is there an easier proof? Or a Cheeger-like proof? Recall the connection to the
Cheeger-like inequality over flow packings.

• Can this proof be extended to non-uniform sparsest cuts, where for each pair of (si, ti),
there is a demand di and

ρ(S) =
|δ(S)|∑

i:(si,ti)∈δ(S) di
?

The sparsest cut problem corresponds to there being a unit demand between each pair
of vertices. For the non-uniform case, it is known that there is an O(

√
log n log logn)-

approximation algorithm, but it is not known if the extra log log n term is necessary.

27-6


	Recap of Previous Lecture
	Proof of Structure Theorem

