ORIE 6334 Spectral Graph Theory December 1, 2016

Lecture 27 Remix

Lecturer: David P. Williamson Scribe: Qinru Shi

Note: This is an altered version of the lecture I actually gave, which followed the struc-
ture of the Barak-Steurer proof carefully. With the benefit of some hindsight, I think the
following rearrangement of the same elements would have been more effective.

1 Recap of Previous Lecture

Last time we started to prove the following theorem.

Theorem 1 (Arora, Rao, Vazirani, 2004) There is an O(y/logn)-approzimation algo-
rithm for sparsest cut.

The proof of the theorem uses a SDP relaxation in terms of vectors v; € R" for all i € V.
Define distances to be d(i,j) = ||v; — v;||* and balls to be B(i,r) = {j € V | d(i,j) < r}.
We first showed that if there exists a vertex ¢ € V such that |B(i,1/4)| > n/4, then we can
find a cut of sparsity < O(1)- OPT. If there does not exist such a vertex in V', then we can
find U C V with |U| > n/2 such that for any i € U, 1/4 < |jv;||*> < 4 and there are at least
n/4 vertices j € U such that d(i,75) > 1/4.

Then we gave the ARV algorithm.

Algorithm 1: ARV Algorithm
Pick a random vector r such that r(i) ~ N(0,1)
Let L={ieV:v-r<—-1}and R={ieV :v-r>1}
Find a maximal matching M C {(i,j) € L x R:d(i,j) < A}
Let L', R’ be the vertices in L, R respectively that remain uncovered
Sort i € V' by increasing distance to L’ (i.e. d(i, L)) to get i1,i2,...,in
Let S, = {i1,...,i} and return S = argminj<x<p—1 p(Sk)

Observation 1 At the end of the ARV algorithm, for anyi € L' and j € R, d(i,j) > A.

Assume the matching algorithm gives the same matching for r as for —r. Then, we can
assume that the probability of ¢ being matched if ¢ € L is the same as the probability of ¢
being matched if i € R.

Next, we stated the following two theorems and proved the first one.

Theorem 2 There exists some constant ¢ such that Pr[|L|,|R| > ¢'n] > ¢.

9This lecture is derived from lecture notes of Boaz Barak and David Steurer http://sumofsquares.org/
public/lec-arv.htmll
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Theorem 3 (Structure Theorem) For A = Q(1//logn), E[|M]] < (%)Qn

The two theorems imply that with constant probability, |L'|, |R’| > %/n, and d(i,j) > A
for all i € L' and j € R'. We showed that if this is the case, we can then conclude that the
algorithm gives us O(y/log n)-approximation. Today we turn to the proof of the Structure
Theorem.

2 Proof of Structure Theorem

The proof shown in this section is due to Boaz Barak and David Steurer (2016). The original
ARYV algorithm gives an O((log n)?/3)-approximation algorithm and needs another algorithm
to reach the guarantee of O(y/logn). Later, Lee showed that the original ARV algorithm
also gives O(y/logn)-approximation. Both of these analyses are long and technical. In
2016, Rothvoss gave a somewhat easier proof (https://arxiv.org/abs/1607.00854). Very
recently Barak and Steurer gave a much easier proof, and this is what we will show today.

Recall the proof ideas we talked about last lecture. We know that ﬁ -1 ~ N(0,1);
from this it is possible to prove a concentration result showing that

o2
Prlv-r > a] <exp <||||2) .
v

Thus
_ C2Inn ].

Pr{(v; —v;) -7 > CVInn| <e s = s
for any i,j € U, since ||v; — v||* < 8. Hence, for sufficiently large C, we have
(v; —vj)-r <CVlnn
for all 7,5 € U with high probability. Then one can show that

E['ma%}(vi —vj)-r] < CVnn.
1,)€

For simplicity of notation, we rename v; - r as X;. Then,

E[.mag(Xi - X;)] < CVlnn.
1,]€

For the rest of the lecture, we will restrict our attention to vertices in U and ignore
anything outside of U; we let n = |U|, and since |U| > n/2, this only changes the constants
in what we need to prove. We would like to prove the following lemma.

Lemma 4 There exists a constant ¢ such that for any positive integer k,

Ak
E [max(Xi - Xj)] > ZR[|M|] — VEA.
1,j€U n
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If we can prove this lemma, the we have that with high probability

4

%EHMH —VEA < Cvinn,
1 Cvlnn ¢ |A

— < L=
nEHMH - 4k + 4V k

k= (2,)20\/@: O(Vnn),

C

or

So if we set

and

then

1 1/d\? 1/Jd\% 1 A\ 2
ZEMN< = (= e < (£
n ! H_4<2> +4<2> C'\/lnn_<2> ’

and we will have proven the Structure Theorem.
How should we prove the lemma? Consider a graph H = (U, E’) where E' = {(i,j) €
UxU:d(i,j) < A}. Let

H(i,k) ={j € U : j can be reached from i in at most k steps in H }.
Define

Y (i, k) = X - X;
(i, k) jer%fk)( j )

n
(k) = ) E[Y (i, k)]
i=1
where ¢ ranges over all starting points. Then,

1
—®(k)<E X;i—X5)|.
L0(06) < B | mag(X - X;)]

So to prove Lemma [4, we’ll instead prove that
1 4k
~0(j) = “E[|M[] - VEA.
n n

Or rather, we’ll prove the following, which implies Lemma [4

Lemma 5

®(k) > 4kE[|M|] — 2énVEA.
To prove this lemma will need the following probability results.

Lemma 6 For any two random variables X and Y,
|E[XY] — E[X]E[Y]| < /Var[X] Var[Y]
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Observation 2 For any vector x,

E[(z - )’] = z|*E

(i )] = .

Theorem 7 (Borell’s Theorem) If Z1,Zs,...,Z; have mean 0 and are jointly normally
distributed, then there exists a constant ¢ such that

Var[max(Zi, ..., Z)] < é¢max(Var[Z1],..., Var[Z]).

Note that in Borell’s Theorem, there’s no dependence on the number of variables t. We
also observe that

Var[X; — Xi] = B[(X; — X;)?] = |Jv; — vl < kA,

by the triangle inequality and the fact that each edge (p,q) in H has ||v, — v,][* < A. The
reason why Borell’s Theorem is useful is that for fixed ¢, (X; — X)) for some j € H(i, k) has
mean 0 and are (jointly) normally distributed, so that Borell’s Theorem says that

Var[Y (i,k)] = Var | max (X; — X;)| <¢é max Var[X; — Xj]
JEH (i,k) JEH (i,k)

Now to prove Lemma [5| But before we start, we can reflect a bit on what the lemma
actually says. If we think about the expected projections of X; — X; as we let j be at most
k steps away from 7, summing over all i, we get a constant times E[|M|] for each of the
steps; this makes sense, since for any matching edge (p, ¢), we have that |X, — X,| > 2 since
either X;, > 1 and X, < —1 or vice versa, so we pick up that difference for each edge in the
matching. However, there is also a correction term that corresponds to the variance. The
proof is formalized below.

Proof of Lemmal5;  If (i,j) € E', then H(j,k—1) C H(i,k), soif Y (j, k—1) = X\, — X;
where h € H(j, k), then

Y(ik)> X, — X, =Y(j,k—1)+ X, — X;.

Thus, if (i, ) € M,
Y(i,k) >Y(j,k—1)+2 (1)
since X; < —1 and X; > 1 given that (4, j) is in the matching.
Let N be an arbitrary pairing of vertices not in M. Then, for any (i,5) € N,

| =

%Y(i, k) + %Y(j, ) > vk —1) + %Y(j, k- 1). ()

—~ N

Now we want to add both sides over all (i,5) € M U N, take expectations and get ®.
Unfortunately, if we take an expectation, there will be a coefficient in front of Y (i, k) of
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the probability that ¢ is in the matching. To get around this issue, we introduce some new
random variables. Let

1 if 7 is matched in M, i € L,
L; =<0 if4is matched in M, i € R,
% otherwise
and
1 if 4 is matched in M, i € R,
R; =140 if¢is matched in M, i€ L,
% otherwise.

Note that E[L;] = E[R;] =  since the probability that ¢ is in the matching when i € L is
the same that ¢ is in the matching when ¢ € R. Adding both sides of and over M
and N, we get

S Y(i, k)L 2> Y (j,k— 1)R; +2|M|. (3)
i=1 j=1

Similarly, we have that

S Y k- DRy > Y(i,k—2)L; +2|M].
j=1 i=1
Then by applying induction, we obtain that for & odd

Y Y (i,k)Li > > Y (§,00R; + 2k|M| = 2k|M|
i=1 j=1

and for k£ even

DY (i k)Li > Y Y (§,0)L; + 2k|M| = 2k| M|,

i=1 j=1
so that .
> Y (i, k)L; > 2k| M| (4)
i=1
for any k.
By Lemma [6]

| B[Y (i, k) L;] — E[Y (i, K)|E[L;] |< \/Var[Y (i, k)] Var[L;] < VékA.
Taking expectation of both sides of , we get

1
5 8(k) = 2KE[[ M| —nVekA,

or

®(k) > 4kE[|M|] — 2nV kA,
as desired. O
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Research Questions:

e Is there an easier proof? Or a Cheeger-like proof? Recall the connection to the
Cheeger-like inequality over flow packings.

e Can this proof be extended to non-uniform sparsest cuts, where for each pair of (s;, t;),
there is a demand d; and

s
Zi:(si,tj)€5(s) d7'

p(S) =
The sparsest cut problem corresponds to there being a unit demand between each pair

of vertices. For the non-uniform case, it is known that there is an O(/logn loglogn)-
approximation algorithm, but it is not known if the extra loglogn term is necessary.
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