
ORIE 6334 Spectral Graph Theory December 1, 2016

Lecture 27 Remix

Lecturer: David P. Williamson Scribe: Qinru Shi

Note: This is an altered version of the lecture I actually gave, which followed the struc-
ture of the Barak-Steurer proof carefully. With the benefit of some hindsight, I think the
following rearrangement of the same elements would have been more effective.

1 Recap of Previous Lecture

Last time we started to prove the following theorem.

Theorem 1 (Arora, Rao, Vazirani, 2004) There is an O(
√

log n)-approximation algo-
rithm for sparsest cut.

The proof of the theorem uses a SDP relaxation in terms of vectors vi ∈ Rn for all i ∈ V .
Define distances to be d(i, j) ≡ ‖vi − vj‖2 and balls to be B(i, r) ≡ {j ∈ V | d(i, j) ≤ r}.
We first showed that if there exists a vertex i ∈ V such that |B(i, 1/4)| ≥ n/4, then we can
find a cut of sparsity ≤ O(1) ·OPT . If there does not exist such a vertex in V , then we can
find U ⊆ V with |U | ≥ n/2 such that for any i ∈ U , 1/4 ≤ ‖vi‖2 ≤ 4 and there are at least
n/4 vertices j ∈ U such that d(i, j) > 1/4.

Then we gave the ARV algorithm.

Algorithm 1: ARV Algorithm

Pick a random vector r such that r(i) ∼ N(0, 1)
Let L = {i ∈ V : vi · r ≤ −1} and R = {i ∈ V : vi · r ≥ 1}
Find a maximal matching M ⊆ {(i, j) ∈ L×R : d(i, j) ≤ ∆}
Let L′, R′ be the vertices in L,R respectively that remain uncovered
Sort i ∈ V by increasing distance to L′ (i.e. d(i, L′)) to get i1, i2, . . . , in
Let Sk = {i1, . . . , ik} and return S = arg min1≤k≤n−1 ρ(Sk)

Observation 1 At the end of the ARV algorithm, for any i ∈ L′ and j ∈ R′, d(i, j) > ∆.

Assume the matching algorithm gives the same matching for r as for −r. Then, we can
assume that the probability of i being matched if i ∈ L is the same as the probability of i
being matched if i ∈ R.

Next, we stated the following two theorems and proved the first one.

Theorem 2 There exists some constant c′ such that Pr[|L|, |R| ≥ c′n] ≥ c′.
0This lecture is derived from lecture notes of Boaz Barak and David Steurer http://sumofsquares.org/

public/lec-arv.html.
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Theorem 3 (Structure Theorem) For ∆ = Ω(1/
√

log n), E[|M |] ≤ ( c
′

2 )2n.

The two theorems imply that with constant probability, |L′|, |R′| ≥ c′

2 n, and d(i, j) ≥ ∆
for all i ∈ L′ and j ∈ R′. We showed that if this is the case, we can then conclude that the
algorithm gives us O(

√
log n)-approximation. Today we turn to the proof of the Structure

Theorem.

2 Proof of Structure Theorem

The proof shown in this section is due to Boaz Barak and David Steurer (2016). The original
ARV algorithm gives anO((log n)2/3)-approximation algorithm and needs another algorithm
to reach the guarantee of O(

√
log n). Later, Lee showed that the original ARV algorithm

also gives O(
√

log n)-approximation. Both of these analyses are long and technical. In
2016, Rothvoss gave a somewhat easier proof (https://arxiv.org/abs/1607.00854). Very
recently Barak and Steurer gave a much easier proof, and this is what we will show today.

Recall the proof ideas we talked about last lecture. We know that v
‖v‖ · r ∼ N(0, 1);

from this it is possible to prove a concentration result showing that

Pr[v · r ≥ α] ≤ exp

(
− α2

‖v‖2

)
.

Thus

Pr[(vi − vj) · r ≥ C
√

lnn] ≤ e−
C2 lnn

8 =
1

nC2/8

for any i, j ∈ U , since ‖vi − vj‖2 ≤ 8. Hence, for sufficiently large C, we have

(vi − vj) · r ≤ C
√

lnn

for all i, j ∈ U with high probability. Then one can show that

E[max
i,j∈U

(vi − vj) · r] ≤ C
√

lnn.

For simplicity of notation, we rename vi · r as Xi. Then,

E[max
i,j∈U

(Xi −Xj)] ≤ C
√

lnn.

For the rest of the lecture, we will restrict our attention to vertices in U and ignore
anything outside of U ; we let n = |U |, and since |U | ≥ n/2, this only changes the constants
in what we need to prove. We would like to prove the following lemma.

Lemma 4 There exists a constant c̃ such that for any positive integer k,

E
[

max
i,j∈U

(Xi −Xj)

]
≥ 4k

n
E[|M |]− c̃

√
k∆.
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If we can prove this lemma, the we have that with high probability

4k

n
E[|M |]− c̃

√
k∆ ≤ C

√
lnn,

or
1

n
E[|M |] ≤ C

√
lnn

4k
+
c̃

4

√
∆

k
.

So if we set

k =

(
2

c′

)2

C
√

lnn = O(
√

lnn),

and

∆ =
1

c̃2k
= Ω

(
1√
lnn

)
,

then
1

n
E[|M |] ≤ 1

4

(
c′

2

)2

+
1

4

(
c′

2

)2 1

C
√

lnn
≤
(
c′

2

)2

,

and we will have proven the Structure Theorem.
How should we prove the lemma? Consider a graph H = (U,E′) where E′ = {(i, j) ∈

U × U : d(i, j) ≤ ∆}. Let

H(i, k) = {j ∈ U : j can be reached from i in at most k steps in H}.

Define
Y (i, k) = max

j∈H(i,k)
(Xj −Xi)

Φ(k) =
n∑
i=1

E[Y (i, k)]

where i ranges over all starting points. Then,

1

n
Φ(k) ≤ E

[
max
i,j∈U

(Xi −Xj)

]
.

So to prove Lemma 4, we’ll instead prove that

1

n
Φ(j) ≥ 4k

n
E[|M |]− c̃

√
k∆.

Or rather, we’ll prove the following, which implies Lemma 4.

Lemma 5
Φ(k) ≥ 4kE[|M |]− 2c̃n

√
k∆.

To prove this lemma will need the following probability results.

Lemma 6 For any two random variables X and Y ,

|E[XY ]− E[X]E[Y ]| ≤
√

Var[X] Var[Y ]
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Observation 2 For any vector x,

E[(x · r)2] = ‖x‖2E

[(
x

‖x‖
· r
)2
]

= ‖x‖2.

Theorem 7 (Borell’s Theorem) If Z1, Z2, . . . , Zt have mean 0 and are jointly normally
distributed, then there exists a constant ĉ such that

Var[max(Z1, . . . , Zt)] ≤ ĉmax(Var[Z1], . . . ,Var[Zt]).

Note that in Borell’s Theorem, there’s no dependence on the number of variables t. We
also observe that

Var[Xj −Xi] = E[(Xj −Xi)
2] = ‖vj − vi‖2 ≤ k∆,

by the triangle inequality and the fact that each edge (p, q) in H has ‖vp − vq‖2 ≤ ∆. The
reason why Borell’s Theorem is useful is that for fixed i, (Xi−Xj) for some j ∈ H(i, k) has
mean 0 and are (jointly) normally distributed, so that Borell’s Theorem says that

Var[Y (i, k)] = Var

[
max

j∈H(i,k)
(Xj −Xi)

]
≤ ĉ max

j∈H(i,k)
Var[Xj −Xi]

= ĉ max
j∈H(i,k)

E[(Xj −Xi)
2]

= ĉ max
j∈H(i,k)

‖vj − vi‖2

≤ ĉ · k∆.

Now to prove Lemma 5. But before we start, we can reflect a bit on what the lemma
actually says. If we think about the expected projections of Xj −Xi as we let j be at most
k steps away from i, summing over all i, we get a constant times E[|M |] for each of the
steps; this makes sense, since for any matching edge (p, q), we have that |Xp−Xq| ≥ 2 since
either Xp ≥ 1 and Xq ≤ −1 or vice versa, so we pick up that difference for each edge in the
matching. However, there is also a correction term that corresponds to the variance. The
proof is formalized below.
Proof of Lemma 5: If (i, j) ∈ E′, then H(j, k−1) ⊆ H(i, k), so if Y (j, k−1) = Xh−Xj

where h ∈ H(j, k), then

Y (i, k) ≥ Xh −Xi = Y (j, k − 1) +Xj −Xi.

Thus, if (i, j) ∈M ,
Y (i, k) ≥ Y (j, k − 1) + 2 (1)

since Xi ≤ −1 and Xj ≥ 1 given that (i, j) is in the matching.
Let N be an arbitrary pairing of vertices not in M . Then, for any (i, j) ∈ N ,

1

2
Y (i, k) +

1

2
Y (j, k) ≥ 1

2
Y (i, k − 1) +

1

2
Y (j, k − 1). (2)

Now we want to add both sides over all (i, j) ∈ M ∪ N , take expectations and get Φ.
Unfortunately, if we take an expectation, there will be a coefficient in front of Y (i, k) of
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the probability that i is in the matching. To get around this issue, we introduce some new
random variables. Let

Li =


1 if i is matched in M, i ∈ L,
0 if i is matched in M, i ∈ R,
1
2 otherwise

and

Ri =


1 if i is matched in M, i ∈ R,
0 if i is matched in M, i ∈ L,
1
2 otherwise.

Note that E[Li] = E[Ri] = 1
2 since the probability that i is in the matching when i ∈ L is

the same that i is in the matching when i ∈ R. Adding both sides of (1) and (2) over M
and N , we get

n∑
i=1

Y (i, k)Li ≥
n∑
j=1

Y (j, k − 1)Rj + 2|M |. (3)

Similarly, we have that

n∑
j=1

Y (j, k − 1)Rj ≥
n∑
i=1

Y (i, k − 2)Li + 2|M |.

Then by applying induction, we obtain that for k odd

n∑
i=1

Y (i, k)Li ≥
n∑
j=1

Y (j, 0)Rj + 2k|M | = 2k|M |

and for k even
n∑
i=1

Y (i, k)Li ≥
n∑
j=1

Y (j, 0)Lj + 2k|M | = 2k|M |,

so that
n∑
i=1

Y (i, k)Li ≥ 2k|M | (4)

for any k.
By Lemma 6,

| E[Y (i, k)Li]− E[Y (i, k)]E[Li] |≤
√

Var[Y (i, k)] Var[Li] ≤
√
ĉk∆.

Taking expectation of both sides of (4), we get

1

2
Φ(k) ≥ 2kE[|M |]− n

√
ĉk∆,

or
Φ(k) ≥ 4kE[|M |]− 2n

√
ĉk∆,

as desired. �
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Research Questions:

• Is there an easier proof? Or a Cheeger-like proof? Recall the connection to the
Cheeger-like inequality over flow packings.

• Can this proof be extended to non-uniform sparsest cuts, where for each pair of (si, ti),
there is a demand di and

ρ(S) =
δ(S)∑

i:(si,ti)∈δ(S) di
?

The sparsest cut problem corresponds to there being a unit demand between each pair
of vertices. For the non-uniform case, it is known that there is an O(

√
log n log logn)-

approximation algorithm, but it is not known if the extra log log n term is necessary.
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