
ORIE 6334 Spectral Graph Theory November 29, 2016

Lecture 26

Lecturer: David P. Williamson Scribe: Venus Lo

1 Recap of Previous Lecture

Last time we showed that an algorithm due to Leighton and Rao (1988) is an O(log n)-
approximation algorithm for the sparsest cut problem. Starting in this lecture, we will see
an O(

√
log n)-approximation algorithm due to Arora, Rao, and Vazirani (2004).

Recall the definition of a sparsest cut.

Definition 1 The sparsity of S is:

ρ(S) =
|δ(S)|
|S||V − S|

Then sparsest cut of a graph G is

ρ(G) = min
S⊂V

ρ(S)

The relaxation that we will use for the sparsest cut problem is:

min
∑
e

x(e)∑
i,j

dx(i, j) ≥ 1

dx is a negative type metric

Here, dx(i, j) is the distance of the shortest i-j path using x(e) as the length of edge e.
Last time we proved that this is indeed a relaxation of the problem; in that proof, we could
have replaced the inequality with

∑
i,j dx(i, j) = 1, and this time it will be useful to do so.

Last time, we also showed a connection between this relaxation and λ2(LF) where LF is
the weighted Laplacian with weights equal to the flows of a flow packing.

For what follows, let us scale x up by n2 and the objective value down by n2:

1

n2
min

∑
e

x(e)∑
i,j

dx(i, j) = n2

dx is a negative type metric

Recall the following equivalent definition of negative-type metrics we mentioned last
time:

0Parts of this lecture are taken from W and Shmoys, Section 15.4 and from lecture notes of Rothvoss
https://arxiv.org/abs/1607.00854.

26-1

https://arxiv.org/abs/1607.00854

Theorem 1 d is a negative type metric if and only if there exists f : V → Rn such that
d(i, j) = ||f(i)− f(j)||2.

Thus we can rewrite the relaxation in terms of vectors vi ∈ Rn such that x(e) = ||vi − vj ||2
for each edge e = (i, j). We obtain the following:

1

n2
min

∑
(i,j)∈E

||vi − vj ||2∑
i,j

||vi − vj ||2 = n2

||vi − vj ||2 + ||vj − vk||2 ≥ ||vi − vk||2 ∀i, j, k
vi ∈ Rn ∀i

This vector program can be written and solved as a semidefinite program in polynomial
time to within ε error. We want to use the optimal solution to this SDP to find a sparse
cut.

Recall that we broke the Leighton-Rao algorithm in two different cases, one of which
was a case in which there were many points that were relatively close to each other. In
particular, we saw that if there is a cluster C such that |C| ≥ 2/3n and C had diameter
≤ 1/(4n2), then we could find S such that ρ(S) ≤ 6

∑
e∈E x(e) ≤ 6 ·OPT .

There is a similar case analysis for the Arora-Rao-Vazirani result; once again, if there
are many points that are close to each other, we can easily find an S of sparsity within a
constant of optimal. This time, we will use the vector relaxation for our bound.

Claim 2 If there is some i ∈ V such that:

|{j ∈ V : ||vi − vj ||2 ≤ 1/4}| ≥ n/4

(i.e. a large subset with a small radius), then we can find S such that:

ρ(S) ≤ 16

n2

∑
(i,j)∈E

||vi − vj ||2 ≤ 16 ·OPT

The proof is analogous to the 6-approximation that we showed in Leighton-Rao, and is not
repeated here.

For simpler notation, let d(i, j) ≡ ||vi − vj ||2 and

Definition 2 B(i, r) = {j ∈ V : d(i, j) ≤ r}.

Given the claim above, we will assume from now on that |B(i, 1/4)| < n/4 for all i ∈ V
(condition ?), otherwise we can find a cut with sparsity within a constant factor of optimal.

Furthermore, given the assumption, we can prove the following, which will allow us to
prove that the ARV algorithm works.

Claim 3 There exists o ∈ V such that |B(o, 4)| ≥ 3n/4. Furthermore, let U = B(o, 4) −
B(o, 1/4). Then |U | ≥ n/2 and for all i ∈ U , there exists at leas n/4 vertices j ∈ U such
that d(i, j) > 1/4.

26-2

Proof: Assume by contradiction that no such o exists. Then for all i ∈ V , we have more
than n/4 vertices at least distance 4 away. Summing over the distances, this gives us

∑
i,j∈V

d(i, j) =
∑
i∈V

∑
j∈V

d(i, j)

 > n ·
(n

4
· 4
)

= n2.

This contradicts the feasibility of v to our vector program. So there must exist some
o ∈ V such that |B(o, 4)| ≥ 3n/4. Then because |B(o, 1/4)| ≤ n/4 by condition ?, for
U ≡ B(o, 4)−B(o, 1/4),

|U | ≥ |B(o, 4)| − |B(o, 1/4)| ≥ 3

4
n− 1

4
n =

1

2
n

Finally, pick any i ∈ U . Since |B(i, 1/4)| < n/4 but |U | ≥ n/2, there must be at least n/4
remaining j ∈ U such that d(i, j) > 1/4. �

Next, we know that solutions to the vector program are invariant under translation, so
we can move o to the origin. This allows us to simplify notation and say that for all i ∈ U :

||vi||2 = ||vi − vo||2 ≤ 4

||vi||2 = ||vi − vo||2 ≥ 1/4.

2 ARV Algorithm

As with the Goemans-W max cut algorithm, the ARV algorithm takes a random vector r.
The GW algorithm lets S be the set of all vertices i such that vi · r ≥ 0. The problem with
doing something similar here is that the ratio between the probability an edge (i, j) ends up
in the cut and the contribution of that edge to the objective function can get unboundedly
large as ‖vi − vj‖2 becomes small, which makes a max cut style analysis not work in this
case. So the ARV algorithm is going to use some similar ideas, but try to avoid looking at
edges with ‖vi − vj‖2 small.

Let (v1, . . . , vn) be the vectors we get from solving the SDP. Our algorithm proceeds as
follows. In the algorithm below, ∆ is a parameter we will set later.

Algorithm 1: ARV Algorithm

Pick a random vector r such that r(i) ∼ N(0, 1)
Let L = {i ∈ V : vi · r ≤ −1} and R = {i ∈ V : vi · r ≥ 1}
Find a maximal matching M ⊆ {(i, j) ∈ L×R : d(i, j) ≤ ∆}
Let L′, R′ be the vertices in L,R respectively that remain uncovered
Sort i ∈ V by increasing distance to L′ (i.e. d(i, L′)) to get i1, i2, . . . , in
Let Sk = {i1, . . . , ik} and return S = arg min1≤k≤n−1 ρ(Sk)

Observation 1 Step 4 above implies that if i ∈ L′, j ∈ R′, then d(i, j) > ∆, otherwise we
could have increased the size of M .

26-3

Figure 1: Pictorial depiction of algorithm

3 Starting the Analysis

To prove that ARV is an O(
√

log n)-approximation algorithm, we will need the following
two theorems.

Theorem 4 There is some constant c′ such that Pr[|L|, |R| > c′n] ≥ c′.

Theorem 5 (Structure Theorem) For ∆ = Ω(1/
√

log n), E[|M |] ≤ (c′/2)2n.

Using Theorem 5 and Markov’s Inequality, we can conclude that

Pr

[
|M | ≥ c′

2
n

]
≤ E[|M |]
c′/2 · n

≤ c′

2
.

If the size of the matching is at most c′

2 n with probability at least 1−c′/2 while the size of |L|
and |R| are at least c′n with probability at least c′, we can then conclude that |L′|, |R′| ≥ c′

2 n
with constant probability.

Using a similar analysis to last class and using the theorems above, we get our O(
√

log n)-
approximation:

min
1≤k≤n−1

ρ(Sk) = min
1≤k≤n−1

|δ(Sk)|
|Sk||V − Sk|

≤
∑n−1

k=1 |d(ik+1, L
′)− d(ik, L

′)||δ(Sk)|∑n−1
k=1 |d(ik+1, L′)− d(ik, L′)||Sk||V − Sk|

=

∑
(i,j)∈E |d(i, L′)− d(j, L′)|∑
i,j∈V |d(i, L′)− d(j, L′)|

≤
∑

(i,j)∈E ||vi − vj ||2∑
i∈L′

∑
j∈R′ |d(j, L′)|

≤
∑

(i,j)∈E ||vi − vj ||2

|L′||R′|∆

= O(
√

log n) · 1

n2

∑
(i,j)∈E

||vi − vj ||2

≤ O(
√

log n) ·OPT

26-4

Figure 2: Fact ??

Note that the second to the last inequality follows in the denominator since d(j, L′) ≥ ∆
for any j ∈ R′.

We now turn to the proof of Theorem 4.
Proof of Theorem 4]: First, pick i, j ∈ U such that d(i, j) = ||vi − vj ||2 > 1/4. We
have:

1/4 ≤ ||vi||2 ≤ 4

1/4 ≤ ||vj ||2 ≤ 4

Without loss of generality, assume ||vi|| ≥ ||vj ||. Let w be the projection of vj onto vi. From
the relaxation, we know that the following inequalities are obeyed.

||vi − vo||2 ≤ ||vi − vj ||2 + ||vj − vo||2

||vi − vj ||2 ≤ ||vi − vo||2 + ||vo − vj ||2

These two inequalities imply that the angle between vj and vi − vj is not obtuse, and
similarly the angle between vi and vj is not obtuse by the Law of Cosines. So let α be the
angle between vi − vj and w, and β be the angle between vj and w (See Figure 2). Then it
must be the case that α + β ≤ π/2 and vi · vj ≥ 0. We can now prove a bound on ‖w‖ by
applying some case analysis.

• If α ≤ π/4, then ||w|| ||vi − vj || cosα ≥ (1/
√

2)(1/2).

• If β ≤ π/4, then ||w|| ||vj || cosβ ≥ (1/
√

2)(1/2).

Hence we know that ||w|| ≥ 1
2
√
2
.

So now we can consider Pr[i ∈ L, j ∈ R]. We claim that if r · vi ∈ [−2,−1] and r ·w ≥ 3,
then i ∈ L and j ∈ R. We know that r · vi ≤ −1 places i ∈ L, so we just need to show that
r · vj ≥ 1 to place j ∈ R. Notice that

vj = (vi · vj)
vi
||vi||2

+ w

26-5

Taking a dot product with r on both sides

r · vj = (vi · vj)
r · vi
||vi||2

+ r · w

≥ (1)(−2) + 3

= 1,

as desired.
So we can lower bound the probability that i ∈ L and j ∈ R as

Pr[i ∈ L, j ∈ R] ≥ Pr[−2 ≤ r · vi ≤ −1 and r · w ≥ 3]

= Pr

[
−2

||vi||
≤ r · vi

||vi||
≤ −1

||vi||

]
· Pr

[
r · w

||w||
≥ 3

||w||

]
= Ω(1)

The first equality is true because vi and w are orthogonal, and thus the two probabilities are
independent by properties of multivariate normal distribution (in particular r · x and r · y
are independently distributed for vectors x and y orthogonal to each other). For the last
line, given a unit-vector x, then r · x ∼ N(0, 1). We have bounds on ||vi|| and ||w||, so we
have at least constant-sized interval of a standard normal distribution for each probability
and the probabilities must be at least a constant.

Similarly we can show that

Pr[i ∈ R, j ∈ L] ≥ Pr[1 ≤ r · vi ≤ 2, r · w ≤ −3] = Ω(1)

Hence we expect Ω(n2) pairs of such that i ∈ L, j ∈ R or vice versa, and this is sufficient
to prove the theorem. �

4 Structure Theorem

In the next lecture we will prove the structure theorem, following a new proof given by
Barak and Steurer. To give an idea of the proof, we observed before that

v

||v||
· r ∼ N(0, 1).

It is possible to show that Pr[v · r ≥ α] ≤ exp(−α2/||v||2). In particular, for i, j ∈ U , we
know that ||vi − vj ||2 ≤ 8, so that

vi − vj
||vi − vj ||

· r ∼ N(0, 1).

It then follows that

Pr
[
(vi− vj) · r ≥ C

√
lnn

]
≤ e

−C2 lnn
8 =

1

nC2/8
.

26-6

So for C sufficiently large, we can assume with high probability that (vi − vj) · r ≤ C
√

lnn
for all i, j ∈ U . In order to show the Structure Theorem, we will show that:

Ω(1)

∆

(
E[|M |]
n

)3

≤ E
[

max
i,j∈U

(vi − vj) · r
]
≤ C
√

lnn

Then for ∆ = Ω(1/
√

log n), we get that E[|M |] ≤
(
c′

2

)2
n, as desired.

26-7

	Recap of Previous Lecture
	ARV Algorithm
	Starting the Analysis
	Structure Theorem

