ORIE 6334 Spectral Graph Theory

November 22, 2016
Lecture 25
Lecturer: David P. Williamson
Scribe: Pu Yang

In the remaining three lectures, we will cover a prominent result by Arora, Rao, and Vazirani for the sparsest cut problem. In this lecture, we will set the scene by giving a prior result by Leighton and Rao, and explain what the Arora-Rao-Vazirani algorithm has to do with the topic of this course.

Recall that the sparsity of a cut $S \subseteq V$ in a graph $G=(V, E)$ is defined as

$$
\rho(S) \equiv \frac{|\delta(S)|}{|S||V-S|},
$$

where $\delta(S)$ is the set of edges with exactly one end in S. The sparsest cut of a graph is the defined as

$$
\rho(G) \equiv \min _{S \subseteq G} \rho(S)
$$

Recall also that the sparsest cut is related to two other concepts. The edge expansion of a set $S \subseteq V,|S| \leq n / 2$ is defined as

$$
\alpha(S) \equiv \frac{|\delta(S)|}{|S|}
$$

and the edge expansion of a graph

$$
\alpha(G) \equiv \min _{S \subseteq V,|S| \leq n / 2} \alpha(S)
$$

The conductance of a set $S \subseteq V$ is defined as

$$
\phi(S) \equiv \frac{|\delta(S)|}{\min (\operatorname{Vol}(S), \operatorname{Vol}(V-S))},
$$

where

$$
\operatorname{Vol}(S) \equiv \sum_{i \in S} \operatorname{deg}(i)
$$

and

$$
\phi(G) \equiv \min _{S \subseteq G} \phi(S)
$$

We'll cover the following two results in the next three lectures.

[^0]Theorem 1 (Leighton and Rao 1988) There is an $O(\log n)$-approximation algorithm for the sparsest cut problem.

Theorem 2 (Arora, Rao, and Vazirani 2004) There is an $O(\sqrt{\log n})$-approximation algorithm for the sparsest cut problem.

Let us first look at a relaxation of the sparsest cut problem:

$$
\begin{aligned}
\rho_{L R} \equiv & \min \sum_{e \in E} x(e) \\
\text { s.t. } & \sum_{i, j: i \neq j} d_{x}(i, j) \geq 1 \\
& x(e) \geq 0 \quad \forall e \in E,
\end{aligned}
$$

where $d_{x}(i, j)$ is the shortest path distance from i to j using x as edge lengths.
We claim that this relaxation can be solved in polynomial time. To see that it is a relaxation, let S^{*} be the sparsest cut. Set

$$
x(e)= \begin{cases}\frac{1}{\left|S^{*}\right|\left|V-S^{*}\right|} & \text { if } e \in S^{*} \\ 0 & \text { o.w. }\end{cases}
$$

Then

$$
\sum_{i, j: i \neq j} d_{x}(i, j) \geq\left|S^{*}\right|\left|V-S^{*}\right| \frac{1}{\left|S^{*}\right|\left|V-S^{*}\right|}=1
$$

This is true because for any path that connects a node in S^{*} and a node in $V-S^{*}$, it must use at least one edge in $\delta\left(S^{*}\right)$, and the number of pairs of nodes with one in S^{*} and the other in $V-S^{*}$ is $\left|S^{*}\right|\left|V-S^{*}\right|$. The objective function for x set in this way is

$$
\sum_{e \in E} x(e)=\frac{\left|\delta\left(S^{*}\right)\right|}{\left|S^{*}\right|\left|V-S^{*}\right|}=\rho\left(S^{*}\right)=\rho(G)
$$

So x set in this way is a feasible solution to this problem, and the optimal solution for this problem gives a lower bound on $\rho(G)$.

In Lecture 14 on low-stretch trees, we proved the following lemma:
Lemma 3 Let D be some parameter. There is a partition of G into clusters s.t.

- each cluster has diameter (w.r.t. number of edges) less than or equal to D.
- there are at most $\alpha|E|$ intercluster edges with $\alpha \leq \frac{4 \ln n}{D}$.

We claim that by a similar proof, one can get the following extension of the lemma.

Lemma 4 Let D be some parameter, and $x(e) \geq 0$ be lengths of edges in E. There is a partition of G into clusters s.t.

- each cluster has diameter (w.r.t. lengths x) less than or equal to D.
- there are at most $\alpha \sum_{e \in E} x(e)$ intercluster edges with $\alpha \leq \frac{4 \ln n}{D}$.

With this lemma and a little extra work we will arrive at the algorithm of Leighton and Rao. Let's see why.

First, by choosing appropriate D in Lemma 2, we have the following result.
Lemma 5 Let $D=1 /\left(4 n^{2}\right)$. Divide the graph G into clusters that satisfies Lemma 4. Then either there is a cluster C where $|C| \geq \frac{2 n}{3}$, or there exists $S \subseteq V$ such that $\rho(S)=O(\log n) \sum_{e \in E} x(e) \leq O(\log n) \rho(G)$, where $x(e)$ is the solution for the relaxed problem.

Proof: If there is no cluster with size at least $\frac{2}{3} n$, then order the clusters by nonincreasing size, and add clusters in this order to S until $|S| \geq \frac{1}{3} n$. Then it must be the case that $|V-S| \geq \frac{1}{3} n$ as well, so that

$$
\rho(S)=\frac{|\delta(s)|}{|S||V-S|} \leq \frac{4 n^{2} \cdot 4 \ln n \sum_{e \in E} x(e)}{\frac{1}{9} n^{2}}=O(\log n) \sum_{e \in E} x(e) .
$$

The inequality follows $|\delta(S)|$ is at most the number of intercluster edges, which is at $\operatorname{most}(4 \ln n / D) \sum_{e \in E} x(e)$ by Lemma 3 .

Therefore, when there is no large cluster with size at least $\frac{2}{3} n$, we have found such a cut. What if there exists a cluster C such that $|C| \geq \frac{2}{3} n$?
Lemma 6 If there exists a cluster C such that $|C| \geq \frac{2}{3} n$, with diameter no more than $\frac{1}{4 n^{2}}$, we can find S such that $\rho(S) \leq 6 \sum_{e \in E} x(e) \leq 6 \rho(G)$.

Proof: Let $d(i, C)=\min _{j \in C} d(i, j)$. Order the vertices as i_{1}, \ldots, i_{n} in nonincreasing order of $d(i, C)$. Let $S_{k}=\left\{i_{1}, \ldots, i_{k}\right\}$ for $k=1, \ldots, n-1$.

We claim that $\sum_{i, j \in V}|d(i, C)-d(j, C)| \geq \frac{1}{6}$. We will prove this claim later. The intuition behind this claim is that given we have many nodes in C which are close to each other because the size of C is large and the diameter of C is small, in order for the constraint in the relaxation problem to hold the total of the difference between the distance to C of each pair of nodes must be large.

With this claim, we have that

$$
\begin{aligned}
\min _{1 \leq k \leq n-1} \rho\left(S_{k}\right) & =\min _{1 \leq k \leq n-1} \frac{\left|\delta\left(S_{k}\right)\right|}{\left|S_{k}\right|\left|V-S_{k}\right|} \\
& \leq \frac{\sum_{k=1}^{n-1}\left|d\left(i_{k+1}, C\right)-d\left(i_{k}, C\right)\right|\left|\delta\left(S_{k}\right)\right|}{\sum_{k=1}^{n-1}\left|d\left(i_{k+1}, C\right)-d\left(i_{k}, C\right)\right|\left|S_{k}\right|\left|V-S_{k}\right|} \\
& =\frac{\sum_{(i, j) \in E}|d(j, C)-d(i, C)|}{\sum_{i, j \in V}|d(j, C)-d(i, C)|} \\
& \leq \frac{\sum_{e \in E} x(e)}{1 / 6}=6 \sum_{e \in E} x(e) \leq 6 \rho(G) .
\end{aligned}
$$

The first inequality is easy to check by noticing that the weight $\left|d\left(i_{k+1}, C\right)-d\left(i_{k}, C\right)\right|$ for $\left|\delta\left(S_{k}\right)\right|$ and $\left|S_{k}\right|\left|V-S_{k}\right|$ depends only on k. The last inequality is from the claim. Why is the second equality true? We notice that a given edge (i, j) appears in $\delta\left(S_{k}\right)$ for the indices k such that exactly one of i and j is in S_{k}. Thus if we rewrite

$$
\sum_{k=1}^{n-1}\left|d\left(i_{k+1}, C\right)-d\left(i_{k}, C\right)\right|\left|\delta\left(S_{k}\right)\right|
$$

as a sum over the edges, we get that

$$
\sum_{(i, j) \in E}|d(i, C)-d(j, C)|
$$

Similarly, a given pair of vertices i and j appears in the product $\left|S_{k}\right|\left|V-S_{k}\right|$ for exactly the indices k such that exactly one of i and j is in S_{k}, so we can rewrite

$$
\sum_{k=1}^{n-1}\left|d\left(i_{k+1}, C\right)-d\left(i_{k}, C\right)\right|\left|S_{k}\right|\left|V-S_{k}\right|
$$

as

$$
\sum_{i, j \in V}|d(j, C)-d(i, C)|
$$

It remains to prove the claim. Pick some $i^{\prime} \in C$. For any $i \in V$, there is some $j \in C$ such that $d(i, C)=d(i, j)$. So $d\left(i, i^{\prime}\right) \leq d(i, j)+d\left(j, i^{\prime}\right) \leq d(i, C)+\frac{1}{4 n^{2}}$. Then

$$
\begin{aligned}
1 \leq \sum_{i, j: i \neq j} d(i, j) & \leq \sum_{i, j: i \neq j}\left(d\left(i, i^{\prime}\right)+d\left(i^{\prime}, j\right)\right)=2 n \sum_{i \in V} d\left(i, i^{\prime}\right) \\
& \leq 2 n \sum_{i \in V}\left(d(i, C)+\frac{1}{4 n^{2}}\right)=2 n \sum_{i \in v} d(i, C)+\frac{1}{2}
\end{aligned}
$$

Therefore

$$
\sum_{i \in V} d(i, C)=\sum_{i \notin C} d(i, C) \geq \frac{1}{4 n}
$$

Then

$$
\sum_{i, j \in V}|d(i, C)-d(j, C)| \geq \sum_{i \notin C, j \in C} d(i, C)=|C| \sum_{i \notin C} d(i, C) \geq \frac{2 n}{3} \cdot \frac{1}{4 n}=\frac{1}{6}
$$

Thus we have proved the existence of an $O(\log n)$-approximate algorithm for sparsest cut.

To improve on this result we look at a related relaxation of the sparsest cut problem proposed independently by Goemans and Linial:

$$
\begin{aligned}
\rho_{N} \equiv & \min \sum_{e \in E} x(e) \\
\text { s.t. } & \sum_{i, j ; i \neq j} d_{x}(i, j) \geq 1 \\
& d_{x} \text { is a negative type metric, }
\end{aligned}
$$

where d is a negative type metric iff $\sum_{i, j \in V} d(i, j) z(i) z(j) \leq 0$, for all z such that $z^{T} e=0$. The following is a useful theorem of determining whether a metric has negative type, and will be used next time to show that we can solve the relaxation in polynomial time.

Theorem $7 d$ has negative type iff $\exists f: V \rightarrow \Re^{n}$ s.t. $d(i, j)=\|f(i)-f(j)\|^{2}$.
To see why this is still a relaxation, again let

$$
x(e)= \begin{cases}\frac{1}{\left|S^{*}\right|\left|V-S^{*}\right|} & \text { if } e \in S^{*} \\ 0 & \text { o.w. }\end{cases}
$$

Then for any z s.t. $z^{T} e=0$,

$$
\begin{aligned}
\sum_{i, j \in V} d_{x}(i, j) z(i) z(j) & =\frac{1}{\left|S^{*}\right|\left|V-S^{*}\right|} \sum_{i \in S^{*}, j \notin S^{*}} z(i) z(j) \\
& =\frac{1}{\left|S^{*}\right|\left|V-S^{*}\right|}\left(\sum_{i \in S^{*}} z(i)\right)\left(\sum_{j \notin S^{*}} z(j)\right) \\
& =\frac{1}{\left|S^{*}\right|\left|V-S^{*}\right|}\left(\sum_{i \in S^{*}} z(i)\right)\left(-\sum_{j \in S^{*}} z(j)\right) \leq 0 .
\end{aligned}
$$

Thus d_{x} for x so defined is of negative type ${ }^{1}$
We now show that this relaxation is very related to previous topics of the course. To do this, we introduce the concept of a flow packing. Let $P_{i j}$ be the set of all $i-j$ paths in G. Call $F=\left(f_{i j}\right)$, symmetric a flow packing into G if for all paths $P^{k} \in P_{i j}$, there exist $f_{i j}^{k} \geq 0$ such that

$$
\begin{aligned}
f_{i j}=f_{j i} & =\sum_{k} f_{i j}^{k} \\
\sum_{i, j, k:(a, b) \in p^{k} \in P_{i j}} f_{i j}^{k} & \leq 1 \quad \forall(a, b) \in E .
\end{aligned}
$$

Then the following can be shown.

[^1]Theorem 8 For flow packing $F=\left(f_{i j}\right)$, let L_{F} be weighted Laplacian with weights $w(i, j)=f_{i j}$. Then

$$
\rho_{N}=\frac{1}{n} \max _{\text {Flow packings } F} \lambda_{2}\left(L_{F}\right)
$$

The proof of this theorem uses duality, and the details are omitted here.
A natural example of a flow packing is the adjacency matrix A. Then from the theorem, $\rho_{N} \geq \frac{1}{n} \lambda_{2}\left(L_{G}\right)$.

What is the difference between the two relaxations? It turns out there are cases for which the negative-type metric relaxation is much stronger than the relaxation without the negative-type restriction. We have the following lemma.

Lemma 9 There exist graphs G such that $\rho(G)=\Omega(\log n) \rho_{L R}$ but for which $\rho(G)=$ $O(1) \rho_{N}$.

We did not have time to prove this lemma in class, but here is the proof. Proof: \quad There exist 3-regular expander graphs $G=(V, E)$ such that $\alpha(G) \geq \beta$ for some constant $\beta>0$. For these,

$$
\rho(G)=\min _{S \subseteq V} \frac{|\delta(S)|}{|S||V-S|} \geq \min _{S \subseteq V} \frac{\beta}{\max (|S|,|V-S|)}=\frac{\beta}{n-1}
$$

If we set $x(e)=4 /\left(n^{2}(\log n-2)\right)$ for all $e \in E$, then since G is 3-regular, there are at most $1+3+3 \cdot 2+\cdots 3 \cdot 2^{d-1}$ nodes within d hops, or

$$
1+\sum_{k=1}^{d} 3 \cdot 2^{k-1}=1+3\left(2^{d}-1\right)
$$

So within $d=\log _{2} n-3$, there are at most $3 \cdot 2^{\log _{2} n-3}-2=\frac{3}{8} n-2 \leq \frac{1}{2} n$ within this distance. Therefore,

$$
\begin{aligned}
\sum_{i, j \in V} d_{x}(i, j) & =\frac{1}{2} \sum_{i \in V} \sum_{j \neq i} d_{x}(i, j) \\
& \geq \frac{1}{2} \sum_{i \in V} \frac{n}{2} \cdot\left(\frac{4}{n^{2}(\log n-2)}\right)(\log n-2) \\
& =1
\end{aligned}
$$

because we need to traverse at least $\log n-2$ edges to reach $n / 2$ vertices from any given vertex i. Thus x is feasible for the linear program.

Then since there are $3 n / 2$ edges in a 3 -regular graph, we have that

$$
\rho_{L R} \leq \frac{3 n}{2} \cdot \frac{4}{n^{2}(\log n-2)}=\frac{6}{n(\log n-2)}
$$

so that $\rho(G)=\Omega(\log n) \rho_{L R}$.

However, recall that

$$
\beta \leq \alpha(G) \leq 3 \phi(G)
$$

for a 3-regular graph, and that by Cheeger's inequality,

$$
\phi(G) \leq \sqrt{2 \lambda_{2}(\mathcal{L})}=\sqrt{\frac{2}{3} \lambda_{2}\left(L_{G}\right)},
$$

so it follows that $\lambda_{2}\left(L_{G}\right)=\Omega\left(\beta^{2}\right)$. In a 3-regular graph $|\delta(S)| \leq 3 \min (|S|,|V-S|)$, so that

$$
\rho(G) \leq \min _{S \subseteq V} \frac{|\delta(S)|}{|S||V-S|} \leq \min _{S \subseteq V} \frac{3}{\max (|S|,|V-S|)} \leq \frac{6}{n}
$$

Since the adjacency matrix is a flow packing, we have that $\rho_{N} \geq \lambda_{2}\left(L_{G}\right) / n$. Thus

$$
\rho(G) \leq \frac{6}{n} \leq O(1) \cdot \frac{\lambda_{2}\left(L_{G}\right)}{n} \leq O(1) \rho_{N}
$$

[^0]: ${ }^{0}$ Part of this lecture is taken from Leighton and Rao 1999, and another from an unpublished note of Sudan and W; an analogous result to that of Sudan and W also appears in the Arora, Rao, and Vazirani paper.

[^1]: ${ }^{1}$ We also need to show that for the optimal cut the graphs induced by S^{*} and $V-S^{*}$ are both connected; it is possible to do so.

