ORIE 6334 Spectral Graph Theory November 22, 2016

Lecture 25
Lecturer: David P. Williamson Scribe: Pu Yang

In the remaining three lectures, we will cover a prominent result by Arora, Rao,
and Vazirani for the sparsest cut problem. In this lecture, we will set the scene by
giving a prior result by Leighton and Rao, and explain what the Arora-Rao-Vazirani
algorithm has to do with the topic of this course.

Recall that the sparsity of a cut S C V in a graph G = (V| E) is defined as

_)
A= gV =y

where §(.5) is the set of edges with exactly one end in S. The sparsest cut of a graph
is the defined as

p(G) = min p(5).

Recall also that the sparsest cut is related to two other concepts. The edge ex-
pansion of a set S CV, |S| <n/2is defined as

_ 195)
a(8) =57

and the edge expansion of a graph

a(G) = sgvr,?s}f;npa(s)'

The conductance of a set S C V is defined as

5(5)]

5) = L VeI(S), Vol(V = 57)°
where
Vol(S) = Zdeg(z),
ics
and

We'll cover the following two results in the next three lectures.

OPart of this lecture is taken from Leighton and Rao 1999, and another from an unpublished note
of Sudan and W; an analogous result to that of Sudan and W also appears in the Arora, Rao, and
Vazirani paper.

25-1

Theorem 1 (Leighton and Rao 1988) There is an O(logn)-approximation algo-
rithm for the sparsest cut problem.

Theorem 2 (Arora, Rao, and Vazirani 2004) There is an O(y/log n)-approzimation
algorithm for the sparsest cut problem.

Let us first look at a relaxation of the sparsest cut problem:

pLR =min Z z(e)
eclk
sty dy(iyf) > 1
i\jiit]
z(e) >0 VeeFE,
where d, (i, j) is the shortest path distance from ¢ to j using = as edge lengths.

We claim that this relaxation can be solved in polynomial time. To see that it is
a relaxation, let S* be the sparsest cut. Set

—L _ ifee S*
_) Fv=s !
x(e) { 0 0.W.
Then i
de(i,5) > |S*||V = S*gmmr—a =

1,517
This is true because for any path that connects a node in S* and a node in V' — S*,
it must use at least one edge in 6(S*), and the number of pairs of nodes with one in
S* and the other in V' — S* is |S*||V — S*|. The objective function for x set in this
way is

5 (e) = s = 6(8°) = ().

So x set in this way is a feasible solution to this problem, and the optimal solution
for this problem gives a lower bound on p(G).
In Lecture 14 on low-stretch trees, we proved the following lemma:

Lemma 3 Let D be some parameter. There is a partition of G into clusters s.t.
e cach cluster has diameter (w.r.t. number of edges) less than or equal to D.
e there are at most o|E| intercluster edges with o < 41%.

We claim that by a similar proof, one can get the following extension of the lemma.

Lemma 4 Let D be some parameter, and x(e) > 0 be lengths of edges in E. There
is a partition of G into clusters s.t.

25-2

e cach cluster has diameter (w.r.t. lengths) less than or equal to D.

e there are at most 'y, x(e) intercluster edges with ox < 482

With this lemma and a little extra work we will arrive at the algorithm of Leighton
and Rao. Let’s see why.
First, by choosing appropriate D in Lemma 2, we have the following result.

Lemma 5 Let D = 1/(4n?). Divide the graph G into clusters that satisfies Lemma
. Then either there is a cluster C where |C| > 2, or there exists S C V such that
p(S) = O(logn) > .cpx(e) < O(logn)p(G), where x(e) is the solution for the relaxed

problem.

Proof: If there is no cluster with size at least %n, then order the clusters by
nonincreasing size, and add clusters in this order to S until |[S| > in. Then it must
be the case that [V — S| > $n as well, so that

~[a(s)] 4n® -4lnny g r(e)
P8 = gy 5] = 5 =O(logn) Y x(e).

9 ecE

The inequality follows |§(S)| is at most the number of intercluster edges, which is at
most (4Inn/D) > .px(e) by Lemma 3. O

Therefore, when there is no large cluster with size at least %n, we have found such
a cut. What if there exists a cluster C' such that |C| > Zn?

Lemma 6 If there exists a cluster C' such that |C| > %n, with diameter no more
than we can find S such that p(S) < 6% .px(e) < 6p(G).

Proof: Let d(i,C') = minjecd(i,j). Order the vertices as iy,...,%, in non-
increasing order of d(i, C'). Let Sy = {iy,...,ixf for k=1,...,n— 1.

We claim that >~ iy [d(i, C) — d(j,C)| > ¢. We will prove this claim later. The
intuition behind this claim is that given we have many nodes in C' which are close to
each other because the size of C' is large and the diameter of C' is small, in order for
the constraint in the relaxation problem to hold the total of the difference between
the distance to C' of each pair of nodes must be large.

With this claim, we have that

427

- o 10(Sk)|
1;'2’?_1/)(516) REE |Skl[V — Skl

ZZ;i!d(ml,C) d(ix, C)[|6(Sk)|
T Yo ld(ikg, ©) = d(in, C)||Skl|V — Sl
_ 2perldd, €)= d(i, O))
B Z”ev|d(j7 C) —d(i,C)|

ZeEw
< = =6) < 6p(
<= > () <6p(G

ecE

25-3

The first inequality is easy to check by noticing that the weight |d(i1,C) — d(ix, C)|
for |6(Sk)| and |Sk||V — Sk| depends only on k. The last inequality is from the claim.
Why is the second equality true? We notice that a given edge (i, j) appears in §(Sk)
for the indices k such that exactly one of ¢ and j is in S;. Thus if we rewrite

S ld(iger, C) — d(is, C)|I5(S)

as a sum over the edges, we get that

> lde,)l

(i,J)eE

Similarly, a given pair of vertices i and j appears in the product |Sk||V — S| for
exactly the indices k such that exactly one of 7 and j is in Sk, so we can rewrite

n—1
> d(ini1, C) = d(ix, O)||Skl[V = S|

as

> 10,) = d(i, C)].

ijev
It remains to prove the claim. Pick some ¢ € C. For any i € V, there is some
j € C such that d(i,C) = d(i,). So d(i,i') < d(i,j) + d(j,i') < d(i,C) 4 15. Then

0,J:17£] 1,5:17] icv
1
< QnZ (d(z,C) + W) = QnZd(z,C’) 4+ =
2% 1€V
Therefore)
— ; >
Zd(@70) Zd(@,C) 2
eV 1¢C
Then
.) 2n 1 1
> 1dG.C) = d(.O) = Y d0) =101 Y dC) = T =
ijev i¢C,jeC igC

O Thus we have proved the existence of an O(logn)-approximate algorithm for
sparsest cut.

25-4

To improve on this result we look at a related relaxation of the sparsest cut
problem proposed independently by Goemans and Linial:

pN = min Z z(e)

ecE

sty dy(inf) > 1
1,J:17#]
d, is a negative type metric,

where d is a negative type metric iff 3, i\ d(i, j)z(i)2(j) < 0, for all z such that
2Te = 0. The following is a useful theorem of determining whether a metric has
negative type, and will be used next time to show that we can solve the relaxation in
polynomial time.

Theorem 7 d has negative type iff 3f : V — R™ s.t. d(i,5) = || f() — f(H)]>

To see why this is still a relaxation, again let

1 : *
x(e):{ s fees

0.W.
Then for any z s.t. zTe =0,

de(i,j)z(i)z(j):m > (0)z()

1,jeV i€S*,j¢S*
1 . .
RIS (ZZ@)) PIE)
€S ¢S+
1 , .
= S| [V — S| <ZS Z(Z>> <_ ZSZ<])> <0.

Thus d, for x so defined is of negative type.ﬂ

We now show that this relaxation is very related to previous topics of the course.
To do this, we introduce the concept of a flow packing. Let P;; be the set of all i-j
paths in G. Call F = (f;;), symmetric a flow packing into G if for all paths P* € P,
there exist f5 > 0 such that

fi=fii=) I
k
> <1 Y(ab)€E.

Zv]7k(avb)€pk€P'L]

Then the following can be shown.

"'We also need to show that for the optimal cut the graphs induced by S* and V — S* are both
connected; it is possible to do so.

25-5

Theorem 8 For flow packing F' = (fi;), let L be weighted Laplacian with weights
w(i,j) = fij. Then
1
PN = — max Xo(LFp).

N Flow packings F

The proof of this theorem uses duality, and the details are omitted here.

A natural example of a flow packing is the adjacency matrix A. Then from the
theorem, py > %AQ(LG).

What is the difference between the two relaxations? It turns out there are cases
for which the negative-type metric relaxation is much stronger than the relaxation
without the negative-type restriction. We have the following lemma.

Lemma 9 There exist graphs G such that p(G) = Q(logn)prr but for which p(G) =
O(1)pw-
We did not have time to prove this lemma in class, but here is the proof.

Proof: = There exist 3-regular expander graphs G = (V, E) such that o(G) > 8 for
some constant 5 > 0. For these,

0(5)] . B B
_—— > = .
G =i e g Z W S V=) -1

If we set x(e) = 4/(n?*(logn — 2)) for all e € F, then since G is 3-regular, there
are at most 1 +3 +3-2+---3-2%! nodes within d hops, or

d
1+ 328 = 14320 - 1).

So within d = log, n — 3, there are at most 3 - 2'%62773 — 2 = gn -2< %n within this
distance. Therefore,

Zdzg ZZdzy

i,jEV 1€V Jj#i

2325 (wn) e
=1,

because we need to traverse at least logn — 2 edges to reach n/2 vertices from any
given vertex ¢. Thus x is feasible for the linear program.
Then since there are 3n/2 edges in a 3-regular graph, we have that

< 3an 4 B 6
PLE =" n2(logn —2) n(logn —2)’

so that p(G) = Q(logn)pLr.

25-6

However, recall that

B < a(G) <36(G)
for a 3-regular graph, and that by Cheeger’s inequality,
2
O(G) < V2X0(L) = 5/\2(LG),

so it follows that \o(Lg) = 2(8?). In a 3-regular graph [6(S)| < 3min(|S], |V — S]),
so that

(G)<minM<min 3 <§
PR) = 58018V — S = 5&v max(|S[,[V - S|) = n’

Since the adjacency matrix is a flow packing, we have that py > As(Lg)/n. Thus

a(Le)

n

p(G) <

Slo

<0(1) < O(1) pn.

25-7

