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Lecture 25
Lecturer: David P. Williamson Scribe: Pu Yang

In the remaining three lectures, we will cover a prominent result by Arora, Rao,
and Vazirani for the sparsest cut problem. In this lecture, we will set the scene by
giving a prior result by Leighton and Rao, and explain what the Arora-Rao-Vazirani
algorithm has to do with the topic of this course.

Recall that the sparsity of a cut S ⊆ V in a graph G = (V,E) is defined as

ρ(S) ≡ |δ(S)|
|S||V − S|

,

where δ(S) is the set of edges with exactly one end in S. The sparsest cut of a graph
is the defined as

ρ(G) ≡ min
S⊆G

ρ(S).

Recall also that the sparsest cut is related to two other concepts. The edge ex-
pansion of a set S ⊆ V , |S| ≤ n/2 is defined as

α(S) ≡ |δ(S)|
|S|

,

and the edge expansion of a graph

α(G) ≡ min
S⊆V,|S|≤n/2

α(S).

The conductance of a set S ⊆ V is defined as

φ(S) ≡ |δ(S)|
min(Vol(S),Vol(V − S))

,

where
Vol(S) ≡

∑
i∈S

deg(i),

and
φ(G) ≡ min

S⊆G
φ(S).

We’ll cover the following two results in the next three lectures.

0Part of this lecture is taken from Leighton and Rao 1999, and another from an unpublished note
of Sudan and W; an analogous result to that of Sudan and W also appears in the Arora, Rao, and
Vazirani paper.
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Theorem 1 (Leighton and Rao 1988) There is an O(log n)-approximation algo-
rithm for the sparsest cut problem.

Theorem 2 (Arora, Rao, and Vazirani 2004) There is an O(
√

log n)-approximation
algorithm for the sparsest cut problem.

Let us first look at a relaxation of the sparsest cut problem:

ρLR ≡min
∑
e∈E

x(e)

s.t.
∑
i,j:i 6=j

dx(i, j) ≥ 1

x(e) ≥ 0 ∀e ∈ E,

where dx(i, j) is the shortest path distance from i to j using x as edge lengths.
We claim that this relaxation can be solved in polynomial time. To see that it is

a relaxation, let S∗ be the sparsest cut. Set

x(e) =

{ 1
|S∗||V−S∗| if e ∈ S∗

0 o.w.

Then ∑
i,j:i 6=j

dx(i, j) ≥ |S∗||V − S∗| 1

|S∗||V − S∗|
= 1.

This is true because for any path that connects a node in S∗ and a node in V − S∗,
it must use at least one edge in δ(S∗), and the number of pairs of nodes with one in
S∗ and the other in V − S∗ is |S∗||V − S∗|. The objective function for x set in this
way is ∑

e∈E

x(e) =
|δ(S∗)|

|S∗||V − S∗|
= ρ(S∗) = ρ(G).

So x set in this way is a feasible solution to this problem, and the optimal solution
for this problem gives a lower bound on ρ(G).

In Lecture 14 on low-stretch trees, we proved the following lemma:

Lemma 3 Let D be some parameter. There is a partition of G into clusters s.t.

• each cluster has diameter (w.r.t. number of edges) less than or equal to D.

• there are at most α|E| intercluster edges with α ≤ 4 lnn
D

.

We claim that by a similar proof, one can get the following extension of the lemma.

Lemma 4 Let D be some parameter, and x(e) ≥ 0 be lengths of edges in E. There
is a partition of G into clusters s.t.
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• each cluster has diameter (w.r.t. lengths x) less than or equal to D.

• there are at most α
∑

e∈E x(e) intercluster edges with α ≤ 4 lnn
D

.

With this lemma and a little extra work we will arrive at the algorithm of Leighton
and Rao. Let’s see why.

First, by choosing appropriate D in Lemma 2, we have the following result.

Lemma 5 Let D = 1/(4n2). Divide the graph G into clusters that satisfies Lemma
4. Then either there is a cluster C where |C| ≥ 2n

3
, or there exists S ⊆ V such that

ρ(S) = O(log n)
∑

e∈E x(e) ≤ O(log n)ρ(G), where x(e) is the solution for the relaxed
problem.

Proof: If there is no cluster with size at least 2
3
n, then order the clusters by

nonincreasing size, and add clusters in this order to S until |S| ≥ 1
3
n. Then it must

be the case that |V − S| ≥ 1
3
n as well, so that

ρ(S) =
|δ(s)|

|S||V − S|
≤

4n2 · 4 lnn
∑

e∈E x(e)
1
9
n2

= O(log n)
∑
e∈E

x(e).

The inequality follows |δ(S)| is at most the number of intercluster edges, which is at
most (4 lnn/D)

∑
e∈E x(e) by Lemma 3. 2

Therefore, when there is no large cluster with size at least 2
3
n, we have found such

a cut. What if there exists a cluster C such that |C| ≥ 2
3
n?

Lemma 6 If there exists a cluster C such that |C| ≥ 2
3
n, with diameter no more

than 1
4n2 , we can find S such that ρ(S) ≤ 6

∑
e∈E x(e) ≤ 6ρ(G).

Proof: Let d(i, C) = minj∈C d(i, j). Order the vertices as i1, . . . , in in non-
increasing order of d(i, C). Let Sk = {i1, . . . , ik} for k = 1, . . . , n− 1.

We claim that
∑

i,j∈V |d(i, C)− d(j, C)| ≥ 1
6
. We will prove this claim later. The

intuition behind this claim is that given we have many nodes in C which are close to
each other because the size of C is large and the diameter of C is small, in order for
the constraint in the relaxation problem to hold the total of the difference between
the distance to C of each pair of nodes must be large.

With this claim, we have that

min
1≤k≤n−1

ρ(Sk) = min
1≤k≤n−1

|δ(Sk)|
|Sk||V − Sk|

≤
∑n−1

k=1 |d(ik+1, C)− d(ik, C)||δ(Sk)|∑n−1
k=1 |d(ik+1, C)− d(ik, C)||Sk||V − Sk|

=

∑
(i,j)∈E |d(j, C)− d(i, C)|∑
i,j∈V |d(j, C)− d(i, C)|

≤
∑

e∈E x(e)

1/6
= 6

∑
e∈E

x(e) ≤ 6ρ(G).
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The first inequality is easy to check by noticing that the weight |d(ik+1, C)−d(ik, C)|
for |δ(Sk)| and |Sk||V −Sk| depends only on k. The last inequality is from the claim.
Why is the second equality true? We notice that a given edge (i, j) appears in δ(Sk)
for the indices k such that exactly one of i and j is in Sk. Thus if we rewrite

n−1∑
k=1

|d(ik+1, C)− d(ik, C)||δ(Sk)|

as a sum over the edges, we get that∑
(i,j)∈E

|d(i, C)− d(j, C)|.

Similarly, a given pair of vertices i and j appears in the product |Sk||V − Sk| for
exactly the indices k such that exactly one of i and j is in Sk, so we can rewrite

n−1∑
k=1

|d(ik+1, C)− d(ik, C)||Sk||V − Sk|

as ∑
i,j∈V

|d(j, C)− d(i, C)|.

It remains to prove the claim. Pick some i′ ∈ C. For any i ∈ V , there is some
j ∈ C such that d(i, C) = d(i, j). So d(i, i′) ≤ d(i, j) + d(j, i′) ≤ d(i, C) + 1

4n2 . Then

1 ≤
∑
i,j:i 6=j

d(i, j) ≤
∑
i,j:i 6=j

(d(i, i′) + d(i′, j)) = 2n
∑
i∈V

d(i, i′)

≤ 2n
∑
i∈V

(
d(i, C) +

1

4n2

)
= 2n

∑
i∈v

d(i, C) +
1

2
.

Therefore ∑
i∈V

d(i, C) =
∑
i/∈C

d(i, C) ≥ 1

4n
.

Then ∑
i,j∈V

|d(i, C)− d(j, C)| ≥
∑

i/∈C,j∈C

d(i, C) = |C|
∑
i/∈C

d(i, C) ≥ 2n

3
· 1

4n
=

1

6
.

2 Thus we have proved the existence of an O(log n)-approximate algorithm for
sparsest cut.
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To improve on this result we look at a related relaxation of the sparsest cut
problem proposed independently by Goemans and Linial:

ρN ≡min
∑
e∈E

x(e)

s.t.
∑
i,j:i 6=j

dx(i, j) ≥ 1

dx is a negative type metric,

where d is a negative type metric iff
∑

i,j∈V d(i, j)z(i)z(j) ≤ 0, for all z such that

zT e = 0. The following is a useful theorem of determining whether a metric has
negative type, and will be used next time to show that we can solve the relaxation in
polynomial time.

Theorem 7 d has negative type iff ∃f : V → <n s.t. d(i, j) = ‖f(i)− f(j)‖2.

To see why this is still a relaxation, again let

x(e) =

{ 1
|S∗||V−S∗| if e ∈ S∗

0 o.w.

Then for any z s.t. zT e = 0,∑
i,j∈V

dx(i, j)z(i)z(j) =
1

|S∗||V − S∗|
∑

i∈S∗,j /∈S∗

z(i)z(j)

=
1

|S∗||V − S∗|

(∑
i∈S∗

z(i)

)∑
j /∈S∗

z(j)


=

1

|S∗||V − S∗|

(∑
i∈S∗

z(i)

)(
−
∑
j∈S∗

z(j)

)
≤ 0.

Thus dx for x so defined is of negative type.1

We now show that this relaxation is very related to previous topics of the course.
To do this, we introduce the concept of a flow packing. Let Pij be the set of all i-j
paths in G. Call F = (fij), symmetric a flow packing into G if for all paths P k ∈ Pij,
there exist fk

ij ≥ 0 such that

fij = fji =
∑
k

fk
ij∑

i,j,k:(a,b)∈pk∈Pij

fk
ij ≤ 1 ∀(a, b) ∈ E.

Then the following can be shown.

1We also need to show that for the optimal cut the graphs induced by S∗ and V − S∗ are both
connected; it is possible to do so.
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Theorem 8 For flow packing F = (fij), let LF be weighted Laplacian with weights
w(i, j) = fij. Then

ρN =
1

n
max

Flow packings F
λ2(LF ).

The proof of this theorem uses duality, and the details are omitted here.
A natural example of a flow packing is the adjacency matrix A. Then from the

theorem, ρN ≥ 1
n
λ2(LG).

What is the difference between the two relaxations? It turns out there are cases
for which the negative-type metric relaxation is much stronger than the relaxation
without the negative-type restriction. We have the following lemma.

Lemma 9 There exist graphs G such that ρ(G) = Ω(log n)ρLR but for which ρ(G) =
O(1)ρN .

We did not have time to prove this lemma in class, but here is the proof.
Proof: There exist 3-regular expander graphs G = (V,E) such that α(G) ≥ β for
some constant β > 0. For these,

ρ(G) = min
S⊆V

|δ(S)|
|S||V − S|

≥ min
S⊆V

β

max(|S|, |V − S|)
=

β

n− 1
.

If we set x(e) = 4/(n2(log n − 2)) for all e ∈ E, then since G is 3-regular, there
are at most 1 + 3 + 3 · 2 + · · · 3 · 2d−1 nodes within d hops, or

1 +
d∑

k=1

3 · 2k−1 = 1 + 3(2d − 1).

So within d = log2 n− 3, there are at most 3 · 2log2 n−3 − 2 = 3
8
n− 2 ≤ 1

2
n within this

distance. Therefore,∑
i,j∈V

dx(i, j) =
1

2

∑
i∈V

∑
j 6=i

dx(i, j)

≥ 1

2

∑
i∈V

n

2
·
(

4

n2(log n− 2)

)
(log n− 2)

= 1,

because we need to traverse at least log n − 2 edges to reach n/2 vertices from any
given vertex i. Thus x is feasible for the linear program.

Then since there are 3n/2 edges in a 3-regular graph, we have that

ρLR ≤
3n

2
· 4

n2(log n− 2)
=

6

n(log n− 2)
,

so that ρ(G) = Ω(log n)ρLR.
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However, recall that
β ≤ α(G) ≤ 3φ(G)

for a 3-regular graph, and that by Cheeger’s inequality,

φ(G) ≤
√

2λ2(L) =

√
2

3
λ2(LG),

so it follows that λ2(LG) = Ω(β2). In a 3-regular graph |δ(S)| ≤ 3 min(|S|, |V − S|),
so that

ρ(G) ≤ min
S⊆V

|δ(S)|
|S||V − S|

≤ min
S⊆V

3

max(|S|, |V − S|)
≤ 6

n
.

Since the adjacency matrix is a flow packing, we have that ρN ≥ λ2(LG)/n. Thus

ρ(G) ≤ 6

n
≤ O(1) · λ2(LG)

n
≤ O(1) ρN .

2

25-7


