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Lecture 22
Lecturer: David P. Williamson Scribe: Shijin Rajakrishnan

1 Recap

In the previous lectures, we explored the problem of finding spectral sparsifiers and
saw both deterministic and randomized algorithms that given a graph G with n
vertices finds a spectral sparsifier with O

(
n logn
ε2

)
edges. In this lecture, we improve

upon this result to find linear-sized spectral sparsifiers, or more concretely, spectral
sparsifiers with O

(
n
ε2

)
edges.

This is an interesting result since we noted in the past that a spectral sparsifier is
a generalization of the cut sparsifier of a graph, and the best results known previous
to this one for cut sparsifiers were that a cut sparsifier with n logO(1) n/ε2 edges can
be found in nearly linear time [1].

Recall that given a graph G = (V,E), a weighted graph H = (V,E ′) with weights
w(i, j) is an ε-spectral sparsifier of G if

(1− ε)LG � LH � (1 + ε)LG.

In the last lecture, we showed that

(1− ε)LG �
∑

(i,j)∈E

w(i, j)(ei − ej)(ei − ej)
T � (1 + ε)LG

if and only if

(1− ε)I �
∑

(i,j)∈E

w(i, j)xijxij
T � (1 + ε)I,

where the vectors xij = L
†
2
G(ei − ej), and that

∑
(i,j)∈E xijxij

T = I∗ (recall that I∗ is

our continuing fudge of an identity matrix, which is actually LGL
†
G; for any vector v

such that vT e = 0, I∗v = v).
Our goal is, given vectors v1, ...,vm such that

∑m
i=1 vivi

T = I, to show that there
exists some weights wi ≥ 0 and a subset S ⊆ [m] s.t |S| ≤ d n

ε2
e and

(1− ε)2I �
∑
i∈S

wivivi
T � (1 + ε)2I.

0This lecture is derived from Spielman 2015, Lecture 18, http://www.cs.yale.edu/homes/

spielman/561/lect18-15.pdf.
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Definition 1 The vectors vi are said to be in isotropic position if

m∑
i=1

vivi
T = I.

Note that for vectors vi in isotropic position, for any A,

m∑
i=1

vi
TAvi =

m∑
i=1

(vivi
T ) · A = (

m∑
i=1

vivi
T ) · A = I · A = tr(A).

In this lecture, we prove a weaker version of the theorem first and then mention
how to extend it to the general case. The version we prove is as follows.

Theorem 1 Given vectors v1, ...,vm that are in isotropic postion, we can find a
subset S ⊆ [m], and weights wi ≥ 0 such that |S| ≤ 6n and

1√
13
I � 1√

13n

∑
i∈S

wivivi
T �
√

13I.

2 The Algorithm

The basic idea behind the algorithm is that we greedily pick vectors and weights such
that we control how the maximum and minimum eigenvalues change.

Algorithm 1: Linear sized spectral sparsifier

l← −n; u← n
∆l← 1/3; ∆u← 2
wi ← 0 ∀i
A← 0
for k ← 1 to 6n do

Pick vi, c s.t. λmin(A+ cvivi
T ) ≥ l + ∆l and λmax(A+ cvivi

T ) ≤ u+ ∆u
wi ← wi + c;
A← A+ cvivi

T

l← l + ∆l
u← u+ ∆u

end
return A

Note that initially λmin(A) = λmax(A) = 0, which satisfies l = −n, u = n as
bounds. At the end of the algorithm, λmin(A) ≥ −n + (6n)1

3
= n, and λmax(A) ≤

n + (6n)(2) = 13n. So we divide the matrix by
√

13n to get the bound as given in
the theorem.
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3 Barrier Functions

The genius of the result is that rather than working with λmin and λmax directly, we
use barrier functions, L(l, A) and U(u,A), which we now define.1 We let

L(l, A) =
m∑
i=1

1

λi − l
= tr((A− lI)−1),

and

U(u,A) =
m∑
i=1

1

u− λi
= tr((uI − A)−1),

for l ≤ λ1 ≤ ... ≤ λn ≤ u where the λi are the eigenvalues of A.
Initially, l0 ≤ λmin(A) ≤ λmax(A) ≤ u0. This implies that U(u,A) and L(l, A) are

both positive and bounded. During the course of the algorithm, we pick vectors and
increase l and u so that the barrier functions don’t increase in value, and so we can
ensure that the eigenvalues lie in the range [l, u].

Initially U(u, 0) =
∑n

i=1
1
n

= 1 and L(−n, 0) =
∑n

i=1
1
n

= 1.
What we want in each iteration is to find a vector v and a weight c such that

U(u+ ∆u,A+ cvvT ) ≤ U(u,A) ≤ 1

and
L(l + ∆l, A+ cvvT ) ≤ L(l, A) ≤ 1,

so that the barrier functions do not increase as we update A, u, l through the run of
the algorithm.

4 The Analysis

We now turn towards proving that such a selection of v and c can be made in each
iteration of the loop. We will show that there exists matrices UA and LA such that
the following two lemmas hold.

Lemma 2 The barrier functions do not increase in an iteration; that is,

U(u+ ∆u,A+ cvvT ) ≤ U(u,A)

and
L(l + ∆l, A+ cvvT ) ≤ L(l, A)

holds for c,v, if

vTUAv ≤ 1

c
≤ vTLAv.

1In the original paper due to Batson, Spielman, and Srivastava, as well as other notes on their
result, the notation Φu(A) is used for U(a,A) and Φl(A) is used for L(l, A).
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Lemma 3
m∑
i=1

vi
TUAvi ≤

1

∆u
+ U(u,A) ≤ 1

∆l
− 1

1/L(l, A)−∆l
≤

m∑
i=1

vi
TLAvi.

From the choice of our parameters, note that we get

1

∆u
+ U(u,A) ≤ 1

2
+ 1 =

3

2
,

and
1

∆l
− 1

1/L(l, A)−∆l
≥ 3− 1

1− 1/3
=

3

2
.

From Lemma 3, we see that this implies
m∑
i=1

vTi UAvi ≤
3

2
≤

m∑
i=1

vTi LAvi,

and therefore, there exists some c,vi such that

vi
TUAvi ≤

1

c
≤ vi

TLAvi.

Then Lemma 2 ensures that there exists a vector vi and weight c so that we can add
cviv

T
i to A without increasing the barrier functions.

The only remaining part is to prove the two lemmata.
To prove Lemma 2, we first analyze what the addition of the vector cvvT does to

the matrix A, by using the following formula.

Theorem 4 (Sherman-Morrison formula) For a nonsingular symmetric matrix
X and a vector v

(X − vvT )−1 = X−1 +
X−1vvTX−1

1− vTX−1v
.

The formula expresses a rank-1 update to the inverse of a matrix.

Proof of Lemma 2:
On adding the matrix cvvT to A, the barrier function changes to

U(u,A+ cvvT ) = tr((uI − (A+ cvvT ))−1)

= tr((uI − A− cvvT )−1)

= tr((uI − A)−1) +
c · tr((uI − A)−1vvT (uI − A)−1)

1− cvT (uI − A)−1v

= U(u,A) +
c · tr((uI − A)−1vvT (uI − A)−1)

1− cvT (uI − A)−1v

= U(u,A) + c
tr(vT (uI − A)−2v)

1− cvT (uI − A)−1v

= U(u,A) + c
vT (uI − A)−2v

1− cvT (uI − A)−1v
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The third inequality follows from the Sherman-Morrison formula, the fourth by the
definition of U(u,A), and the fifth by the cyclic property of the trace.

So as we add cvvT , the barrier function increases. To counteract this, we increase
the value of u so to keep the barrier function constant. Let û ≡ u + ∆u. Then we
want to see under what values of c and v the barrier function doesn’t increase. So
then

U(û, A+ cvvT ) = U(û, A) + c
vT (ûI − A)−2v

1− cvT (ûI − A)−1v

= U(u,A)− (U(u,A)− U(û, A)) + c
vT (ûI − A)−2v

1− cvT (ûI − A)−1v

We want U(û, A+ cvvT ) ≤ U(u,A), which will be true if

U(u,A)− U(û, A) ≥ c
vT (ûI − A)−2v

1− cvT (ûI − A)−1v
,

which holds if

1

c
≥ vT (ûI − A)−2v

U(u,A)− U(û, A)
+ vT (ûIA)−1v = vTUAv,

where we define

UA ≡
(ûI − A)−2

U(u,A)− U(û, A)
+ (ûIA)−1.

This proves one half of the Lemma. The other half can be proved similarly, but
with l̂ = l + ∆l, and

LA =
(A− l̂I)−2

L(l̂, A)− L(l, A)
− (A− l̂I)−1.

2
We now turn to the proof of the second Lemma.

Proof of Lemma 3, upper bound: Notice that if u > λmax(A), δ > 0, then
the barrier function is decreasing in u, ie, U(u+ δ, A) < U(u,A).

Now, since the vectors vi are in isotropic position,

m∑
i=1

vi
TUAvi = tr(UA)

=
tr((ûI − A)−2)

U(u,A)− U(û, A)
+ tr((ûI − A)−1)

≤ tr((ûI − A)−2)

U(u,A)− U(û, A)
+ U(u,A).
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To bound the first term, we note that

d

du
U(u,A) =

d

du

n∑
i=1

1

u− λi
= −

n∑
i=1

1

(u− λi)2
= − tr((uI − A)−2),

and
d2

du2
U(u,A) = 2

n∑
i=1

1

(u− λi)3
> 0,

and thus U(u,A) is decreasing and convex in u.
In particular, convexity implies that

U(u,A)− U(û, A) ≥ (−∆u)
d

du
U(û, A) = ∆u · tr((ûI − A)−2),

which yields
tr((uI − A)−2)

U(u,A)− U(û, A)
≤ 1

∆u
,

leading to
tr((ûI − A)−2)

U(u,A)− U(û, A)
≤ 1

∆u
.

2
We can prove the lower bound for Lemma 3 in a similar way.

Proof of Lemma 3, lower bound:
In this case, we have

m∑
i=1

vi
TLAvi = tr(LA)

=
tr((A− l̂I)−2)

L(l̂, A)− L(l, A)
− tr((A− l̂I)−1)

=
tr((A− l̂I)−2)

L(l̂, A)− L(l, A)
− L(l̂, A).

Now,
d

dl
L(l, A) =

d

dl

n∑
i=1

1

λi − l
=

n∑
i=1

1

(λi − l)2
= tr((A− lI)−2),

and
d2

dl2
L(l, A) = 2

n∑
i=1

1

(λi − l)3
> 0,

and thus L(l, A) is increasing and convex in l. Then by convexity,

L(l, A)− L(l̂, A) ≥ −∆l
d

dl
L(l̂, A) ≥ −∆l tr((A− l̂I)−2).
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Rearranging terms, we get

tr((A− l̂I)−2)

L(l̂, A)− L(l, A)
≥ 1

∆l
.

To bound the second term, we claim that

L(l̂, A)− L(l, A)

∆l
≤ L(l, A)L(l̂, A).

If the claim is true, then by rearranging terms we get

L(l̂, A) ≤ 1

1/L(l, A)−∆l
,

as desired. To prove the claim we observe that

L(l̂, A)− L(l, A)

∆l
=

1

∆l

n∑
i=1

[
1

λi − l̂
− 1

λi − l

]

=
1

∆l

n∑
i=1

[
λi − l − (λi − l̂)
(λi − l)(λi − l̂)

]

=
1

∆l

n∑
i=1

[
∆l

(λi − l)(λi − l̂)

]

=
n∑
i=1

[
1

(λi − l)(λi − l̂)

]

≤

[
n∑
i=1

1

λi − l

][
n∑
i=1

1

λi − l̂

]
= L(l, A)L(l̂, A),

as long as l ≤ λmin, as we have been guaranteeing. 2
To get a stronger (more general) result, we change the parameters ∆u,∆l, and

then prove

tr(LA) ≥ 1

∆l
− L(l, A)

instead of

tr(LA) ≥ 1

∆l
− 1

1/L(l, A)−∆l
.

The proof of this is messier and involves more algebra, but is not really bad.
Having seen the correctness of the algorithm, we turn towards the question of its

runtime. The general usage of a spectral sparsifier is to reduce the dependence of
the runtime of algorithms that depend on the number of edges by creating a sparse
approximation. The algorithm described runs far too slowly to realize gains using a
sparsifier for cut algorithms (for instance). The faster algorithm due to Lee and Sun

2015, constructs a sparsifier with O( qn
ε2

) edges in Õ(qmn
1
2 ) time.
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