ORIE 6334 Spectral Graph Theory November 3, 2016

Lecture 21
Lecturer: David P. Williamson Scribe: Seung Won (Wilson) Yoo

1 Matrix Multiplicative Weights

Just like matrix Chernoff bounds were a generalization of scalar Chernoff bounds, the
multiplicative weights algorithm can be generalized to matrices. Recall that in the setup
for the multiplicative weight update algorithm, we had a sequence of time stepst =1,..., T}
in each time step ¢, we made a decision 7 € {1...N} and got a value v;(¢) € [0,1]. After we
made a decision in time step ¢, we got to see all the values

In matrix multiplicative weights, we make a decision u € R", ||u|| = 1 and get a value
u? Myu where 0 < M; < I, My € R™", so that u! Myu € [0,1]. As with multiplicative
weights, we make a randomized decision for the vector u based on some weights. We now
maintain a weight matrix W; € R™*", W; = 0. Let P, = H(WTtk) so that tr(P;) = 1 and
P, = 0. If \;; are eigenvalues of P;, and x;; are the corresponding orthonormal eigenectors,
then P, = Y0 Apwaxl, Nie > 0, S0, A = 1; that is, P, is a discrete distribution over
the vectors x;, and we will choose the vector x;; with probability A;.

Algorithm 1: Matrix Multiplicative Weights

Wt — T
for t <+ 1 to T do
W,
Pt A t?"(wt/t)

Make decision u; = x;; with prob. A\; for z;;, Ay eigenvectors/eigenvalues of P,
Get value utTMtut
T
Wi < exp(ed_j g My).
end

This is a generalization of the multiplicative weights algorithm as one can think of all of
the matrices as diagonal, and the values that are associated with each of the n decisions as
each entry on the diagonal of M;. In this case, the weights are maintained on the diagonal
of W; as well.

We introduce a new piece of notation:

AeB = Zaijbij7 A= (aij),B = (bz])
1,J

9This lecture is drawn from Arora and Kale 2016 http://dl.acm.org/citation.cfm?doid=2837020;
Kale’s thesis http://www.satyenkale.com/papers/thesis.pdf; and de Carli Silva, Harvey, and Sato 2015
https://www.cs.ubc.ca/~nickhar/Publications/SparsifierMMWUM/SparsifierMMWUM. pdf.

21-1

http://dl.acm.org/citation.cfm?doid=2837020
http://www.satyenkale.com/papers/thesis.pdf
https://www.cs.ubc.ca/~nickhar/Publications/SparsifierMMWUM/SparsifierMMWUM.pdf

Then the expected value of the algorithm is:

T n T n
DY (@i Myzi) =D 0 (i, o My)

t=1 i=1 t=1 i=1

T n

= Z(Z Az‘t%‘tmg) i Mt)
t=1 i=1
T

=> PielM,.
t=1

We want to show that the algorithm does as well as any fixed decision u, ||u|| = 1. Note

that for a fixed decision u,
T T T T
Z uTMtu =ul <Z Mt> u < I|I|12|1|X1 ul <Z Mt> U = Amax <Z Mt> .
=1 =1 wil= =1 =1

Thus the best fixed decision is the eigenvector corresponding to the maximum eigenvalue
T
of Zt:l Mt.
To carry out our analysis, we need the following facts.

Theorem 1 (Golden-Thompson Inequality)
tr(exp(A + B)) < tr(exp(A) exp(B)).
Claim 2 tr(AB) = A e B for either A, B symmetric
Claim 3 Xe A< XeBifA<B, X =0.
Claim 4 If0 < A =<1, then
exp(ed) = I + (e —1)A.

We can now prove a theorem analogous to the one we proved for the multiplicative
weights update algorithm.

Theorem 5 Let 0 < e < % Then ZtT:I P M; > %Jre)\max(zg;l M) — %ln n.

Proof: The proof mirrors that of the scalar multiplicative weights algorithm’s proof.
We start by getting an upper and lower bound on tr(Wp41).

tr(Wigq) = tr (exp (ez Mk>>
k=1
t—1
< tr (exp (eZMk> eXp(EMt))

k=1
— W, o expl(eMy)
= tr(W;) P ® exp(eMy)
<tr(Wy)P, e (I+ (e —1)My)
=tr(Wy)(1 + (e° — 1) P, o My)
< tr(Wy)(exp(e® — 1)P; o My)).

21-2

The first inequality follows from Golden-Thompson, the second follows from Claims 3 and
4 combined, and the third follows from 1 + x < exp(z). We can determine tr(Wri1) by a
telescoping product, getting that

T T
tr(Wry) < tr(Wh) exp ((e6 -1) ZPt ° Mt> =n exp <(e6 -1) ZPt . Mt>)
t=1

t=1

For the lower bound,

tr(WT+1) >)\max(WT-‘rl)

)
o))

The last step follows from the fact that taking maximum eigenvalue of a matrix derived by
exponentiating all of the eigenvalues is the same as taking the exponential of the maximum

MﬂEMﬂ

eigenvalue.
Given the upper bound and lower bound on tr(Wp41), we then get

T
n exp ((e6 - 1)ZPtoMt> > exp (maz (ZMt)) .
t=1

Taking the log of both sides and rearranging, we get
T € 4 1
;Pt-Mt >~ Amax (ZM) S
T
Amax (Z Mt> — flnn

t=1

1lnn

In the last inequality we use e — 1 < e(1+¢€), for 0 < e < é, and e —1 > e O

2 A Feasibility Problem and Application to Spectral Sparsi-
fication

Just as we did with the multiplicative weights algorithm, we now want to apply matrix
multiplicative weights to a feasibility problem. We do so here as follows. Suppose we have
B;j,i=1,...,m,with B; = 0 for all 4, and >_\" | B; = I. We want to find a sparse weighting
y e R™ > O such that (1 —€)I <> y(i)B; = (1+¢)I. Assume we have an oracle such
that given P, P = 0 with tr(P) = tr(P) = 1, the oracle returns a y such that y(i) # 0 at
only one entry i, y(i) = o and oP @ B; < (1 +¢€) and oP @ B; > (1 —¢).

We define the width of the oracle as

p = maxatr(B;)
y

21-3

over all y returned by oracle.
The application to spectral sparsification is as follows. We have m matrices, and one
matrix for every edge in our graph. Let us index those matrices by the edges in our graph:

2 2
B(i,j) = Lg/ (ei — ej)(ei — ej)TLg

We want the sum of them to be the identity matrix. We showed it last time but we show
it again.

2 2
Z B(i,j) = LTG{ (Z (ei - ej)(ei - ej)T)Lg
(i,j)eE (i,9)eEE
— L Le Ll
pu— I*

(Recall that this is the identity when multiplied by any vector orthogonal to e.) So what’s
our sparse solution going to be? If this algorithm works, we get a sparse y such that

2 2
(L=l LY Y yugplei—e)ei—ep)™ | LE? 2 (1+ €)1
(i.j)eE
We showed last time that this equation is satisfied for some vector y if and only if if subgraph
H of G is a spectral sparsifier using the weights given by y; ;).
(1—€)Lg XLy = (1+4+¢)Lg.
In the following algorithm, the two weight matrices W; and W; ensure that the resulting
sparse sum does not get larger than (1 + ¢)I and does not get smaller than (1 — ¢€)I.

Algorithm 2: Algorithm for Feasibility
Wy« I, Wl — 1
fort <+ 1 to T do
Wi 5 Wi

Py oy P < tr(VTt/t)
Run oracle to find y; such that only one i st yr(i) = ar >0, oy P @ By < (1 +¢),
aPt.Bit > (1—6)
Wy = exp(§ 2oy it yk(i) B)
Wi+ eXP(_i 22:1 2211 k(i) B;)

end

_ T
return § = % D1 Yt

An upper bound on the number on the number of nonzeros in ¢ is T' because at every
timestep we increase exactly one index of . We also notice that %Z;’;l y¢(1)B; plays the
role of M; from matrix multiplicative weights in the algorithm above since

1 m
atr(Bi) <p = 0= = y(i)B; X I.
P =1

21-4

It then follows that

iPt . <;iy(i)Bi> < Td+o
t=1 i=1

p

Theorem [5] guarantees that

T 1 1 1 & 1
;Pt . (p;yt(z)&) > T max (pZZym)Bi) ——lnn.

(1+€)

If we choose T = 21nn, we have that

L 1 3 13 T(1+e)
l—i-e (,)ZZ% >_elnn§tzlpt°<p;y(l)3i>§p

t=1 i=1
T SN 1 T(1+e¢)
— Amax §(i)B; | —=Inn < ——~
(1+0) (;”) c 7
o 1+¢€)p
Amax Bi | <(1+e¢)? d+9p,
(;y@) >_(+6) 4 lnn
<(1+e)?+e
< (1 +4e)

Similarly, we can show that

)\min (Z g(Z)Bz> Z 1-— 467
i=1

so that we have

(1 —4e)I 1+4e)l.

||M§

As stated above, y has at most 7' = O(Gﬂ2 Inn) nonzeroes. In the lecture we did not have
time to show the lemma below, which states that we can find an oracle with p = O(@)
which implies O((nInn)/€®) nonzeroes. It is possible to modify the algorithm to obtain

O((nlnn)/e?) nonzeroes.

)

Lemma 6 There is an oracle with width p = O(@)

Proof: Recall that the oracle needs to find ¢ and « such that aPe B; < 1+, aPe B; >
1 —¢ and atr(B;) < p=(1+¢€)n/e.
Define p; = B; @ P. Then p; > 0 since P > 0 and B; = 0. Also

En:p, Po(ZB) I=tr(P)=1.
i=1

So p; is a probability distribution.

21-5

Then

so that

. [tr(pfi) . (1—{;6)71} b [tr(Bi) N (1+€)n] R

by Markov’s inequality. Similarly,

Pe B, -
E; = PeB,=Pel =tr(P)=1,

i=1

so that

P e B; P e B, 1
Pr[.~ ZSl%—e]:l—Pr[.~ Z>1—{—6]>1—1+
€

Di Di
again by Markov’s inequality.
So there must exist an index 4 such that both
LtBi <1+¢€and tr(NBi) < (1+e)n
Di Di €

p.
Thus if we set a = 1/p;, we get that aP e B; < 1+ ¢, atr(B;) < p, and
. 1 -~
aP.Bi:TPOBizlzl—E,
pi

where the final equation follows by the definition of p;.

21-6

)

	Matrix Multiplicative Weights
	A Feasibility Problem and Application to Spectral Sparsification

