Lecture 21

Lecturer: David P. Williamson
Scribe: Seung Won (Wilson) Yoo

1 Matrix Multiplicative Weights

Just like matrix Chernoff bounds were a generalization of scalar Chernoff bounds, the multiplicative weights algorithm can be generalized to matrices. Recall that in the setup for the multiplicative weight update algorithm, we had a sequence of time steps $t=1, \ldots, T$; in each time step t, we made a decision $i \in\{1 \ldots N\}$ and got a value $v_{t}(i) \in[0,1]$. After we made a decision in time step t, we got to see all the values

In matrix multiplicative weights, we make a decision $u \in \mathbb{R}^{n},\|u\|=1$ and get a value $u^{T} M_{t} u$ where $0 \preceq M_{t} \preceq I, M_{t} \in \mathbb{R}^{n \times n}$, so that $u^{T} M_{t} u \in[0,1]$. As with multiplicative weights, we make a randomized decision for the vector u based on some weights. We now maintain a weight matrix $W_{t} \in \mathbb{R}^{n \times n}$, $W_{t} \succeq 0$. Let $P_{t}=\frac{W_{t}}{\operatorname{tr}\left(W_{k}\right)}$ so that $\operatorname{tr}\left(P_{t}\right)=1$ and $P_{t} \succeq 0$. If $\lambda_{i t}$ are eigenvalues of P_{t}, and $x_{i t}$ are the corresponding orthonormal eigenectors, then $P_{t}=\sum_{i=1}^{n} \lambda_{i t} x_{i t} x_{i t}^{T}, \lambda_{i t} \geq 0, \sum_{i=1}^{n} \lambda_{i t}=1$; that is, P_{t} is a discrete distribution over the vectors $x_{i t}$, and we will choose the vector $x_{i t}$ with probability $\lambda_{i t}$.

```
Algorithm 1: Matrix Multiplicative Weights
    \(W_{t} \leftarrow I\)
    for \(t \leftarrow 1\) to \(T\) do
        \(P_{t} \leftarrow \frac{W_{t}}{\operatorname{tr}\left(W_{t}\right)}\)
        Make decision \(u_{t}=x_{i t}\) with prob. \(\lambda_{i t}\) for \(x_{i t}, \lambda_{i t}\) eigenvectors/eigenvalues of \(P_{t}\)
        Get value \(u_{t}^{T} M_{t} u_{t}\)
        \(W_{t+1} \leftarrow \exp \left(\epsilon \sum_{k=1}^{T} M_{k}\right)\).
    end
```

This is a generalization of the multiplicative weights algorithm as one can think of all of the matrices as diagonal, and the values that are associated with each of the n decisions as each entry on the diagonal of M_{t}. In this case, the weights are maintained on the diagonal of W_{t} as well.

We introduce a new piece of notation:

$$
A \bullet B \equiv \sum_{i, j} a_{i j} b_{i j}, A=\left(a_{i j}\right), B=\left(b_{i j}\right)
$$

[^0]Then the expected value of the algorithm is:

$$
\begin{aligned}
\sum_{t=1}^{T} \sum_{i=1}^{n} \lambda_{i t}\left(x_{i t}^{T} M_{t} x_{i t}\right) & =\sum_{t=1}^{T} \sum_{i=1}^{n} \lambda_{i t}\left(x_{i t} x_{i t}^{T} \bullet M_{t}\right) \\
& \left.=\sum_{t=1}^{T}\left(\sum_{i=1}^{n} \lambda_{i t} x_{i t} x_{i t}^{T}\right) \bullet M_{t}\right) \\
& =\sum_{t=1}^{T} P_{t} \bullet M_{t} .
\end{aligned}
$$

We want to show that the algorithm does as well as any fixed decision $u,\|u\|=1$. Note that for a fixed decision u,

$$
\sum_{t=1}^{T} u^{T} M_{t} u=u^{T}\left(\sum_{t=1}^{T} M_{t}\right) u \leq \max _{u:\|u\|=1} u^{T}\left(\sum_{t=1}^{T} M_{t}\right) u=\lambda_{\max }\left(\sum_{t=1}^{T} M_{t}\right)
$$

Thus the best fixed decision is the eigenvector corresponding to the maximum eigenvalue of $\sum_{t=1}^{T} M_{t}$.

To carry out our analysis, we need the following facts.

Theorem 1 (Golden-Thompson Inequality)

$$
\operatorname{tr}(\exp (A+B)) \leq \operatorname{tr}(\exp (A) \exp (B))
$$

Claim $2 \operatorname{tr}(A B)=A \bullet B$ for either A, B symmetric
Claim $3 X \bullet A \leq X \bullet B$ if $A \preceq B, X \succeq 0$.
Claim 4 If $0 \preceq A \preceq I$, then

$$
\exp (\epsilon A) \preceq I+\left(e^{\epsilon}-1\right) A .
$$

We can now prove a theorem analogous to the one we proved for the multiplicative weights update algorithm.
Theorem 5 Let $0 \leq \epsilon \leq \frac{1}{2}$. Then $\sum_{t=1}^{T} P_{t} \cdot M_{t} \geq \frac{1}{1+\epsilon} \lambda_{\max }\left(\sum_{t=1}^{T} M_{t}\right)-\frac{1}{\epsilon} \ln n$.
Proof: The proof mirrors that of the scalar multiplicative weights algorithm's proof. We start by getting an upper and lower bound on $\operatorname{tr}\left(W_{T+1}\right)$.

$$
\begin{aligned}
\operatorname{tr}\left(W_{t+1}\right) & =\operatorname{tr}\left(\exp \left(\epsilon \sum_{k=1}^{t} M_{k}\right)\right) \\
& \leq \operatorname{tr}\left(\exp \left(\epsilon \sum_{k=1}^{t-1} M_{k}\right) \exp \left(\epsilon M_{t}\right)\right) \\
& =W_{t} \bullet \exp \left(\epsilon M_{t}\right) \\
& =\operatorname{tr}\left(W_{t}\right) P_{t} \bullet \exp \left(\epsilon M_{t}\right) \\
& \leq \operatorname{tr}\left(W_{t}\right) P_{t} \bullet\left(I+\left(e^{\epsilon}-1\right) M_{t}\right) \\
& =\operatorname{tr}\left(W_{t}\right)\left(1+\left(e^{\epsilon}-1\right) P_{t} \bullet M_{t}\right) \\
& \left.\leq \operatorname{tr}\left(W_{t}\right)\left(\exp \left(e^{\epsilon}-1\right) P_{t} \bullet M_{t}\right)\right)
\end{aligned}
$$

The first inequality follows from Golden-Thompson, the second follows from Claims 3 and 4 combined, and the third follows from $1+x \leq \exp (x)$. We can determine $\operatorname{tr}\left(W_{T+1}\right)$ by a telescoping product, getting that

$$
\operatorname{tr}\left(W_{T+1}\right) \leq \operatorname{tr}\left(W_{1}\right) \exp \left(\left(e^{\epsilon}-1\right) \sum_{t=1}^{T} P_{t} \bullet M_{t}\right)=n \exp \left(\left(e^{\epsilon}-1\right) \sum_{t=1}^{T} P_{t} \cdot M_{t}\right) .
$$

For the lower bound,

$$
\begin{aligned}
\operatorname{tr}\left(W_{T+1}\right) & \geq \lambda_{\max }\left(W_{T+1}\right) \\
& =\lambda_{\max }\left(\exp \left(\epsilon \sum_{t=1}^{T} M_{t}\right)\right) \\
& =\exp \left(\lambda_{\max }\left(\epsilon \sum_{t=1}^{T} M_{t}\right)\right) .
\end{aligned}
$$

The last step follows from the fact that taking maximum eigenvalue of a matrix derived by exponentiating all of the eigenvalues is the same as taking the exponential of the maximum eigenvalue.

Given the upper bound and lower bound on $\operatorname{tr}\left(W_{T+1}\right)$, we then get

$$
n \exp \left(\left(e^{\epsilon}-1\right) \sum_{t=1}^{T} P_{t} \bullet M_{t}\right) \geq \exp \left(\lambda_{\max }\left(\epsilon \sum_{t=1}^{T} M_{t}\right)\right) .
$$

Taking the log of both sides and rearranging, we get

$$
\begin{aligned}
\sum_{t=1}^{T} P_{t} \cdot M_{t} & \geq \frac{\epsilon}{e^{\epsilon}-1} \lambda_{\max }\left(\sum_{t=1}^{T} M_{t}\right)-\frac{1}{e^{\epsilon}-1} \ln n \\
& \geq \frac{1}{1+\epsilon} \lambda_{\max }\left(\sum_{t=1}^{T} M_{t}\right)-\frac{1}{\epsilon} \ln n .
\end{aligned}
$$

In the last inequality we use $e^{\epsilon}-1 \leq \epsilon(1+\epsilon)$, for $0 \leq \epsilon \leq \frac{1}{2}$, and $e^{\epsilon}-1 \geq \epsilon$.

2 A Feasibility Problem and Application to Spectral Sparsification

Just as we did with the multiplicative weights algorithm, we now want to apply matrix multiplicative weights to a feasibility problem. We do so here as follows. Suppose we have $B_{i}, i=1, \ldots, m$, with $B_{i} \succeq 0$ for all i, and $\sum_{i=1}^{m} B_{i}=I$. We want to find a sparse weighting $y \in \mathbb{R}^{m} \geq 0$ such that $(1-\epsilon) I \preceq \sum_{i=1}^{m} y(i) B_{i} \preceq(1+\epsilon) I$. Assume we have an oracle such that given $P, \tilde{P} \succeq 0$ with $\operatorname{tr}(P)=\operatorname{tr}(\tilde{P})=1$, the oracle returns a y such that $y(i) \neq 0$ at only one entry $i, y(i)=\alpha$ and $\alpha P \bullet B_{i} \leq(1+\epsilon)$ and $\alpha \tilde{P} \bullet B_{i} \geq(1-\epsilon)$.

We define the width of the oracle as

$$
\rho \equiv \max _{y} \alpha \operatorname{tr}\left(B_{i}\right)
$$

over all y returned by oracle.
The application to spectral sparsification is as follows. We have m matrices, and one matrix for every edge in our graph. Let us index those matrices by the edges in our graph:

$$
B_{(i, j)}=L_{G}^{\dagger / 2}\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{T} L_{G}^{\dagger / 2}
$$

We want the sum of them to be the identity matrix. We showed it last time but we show it again.

$$
\begin{aligned}
\sum_{(i, j) \in E} B_{(i, j)} & =L_{G}^{\dagger / 2}\left(\sum_{(i, j) \in E}\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{T}\right) L_{G}^{\dagger / 2} \\
& =L_{G}^{\dagger / 2} L_{G} L_{G}^{\dagger / 2} \\
& =I^{*}
\end{aligned}
$$

(Recall that this is the identity when multiplied by any vector orthogonal to e.) So what's our sparse solution going to be? If this algorithm works, we get a sparse y such that

$$
(1-\epsilon) I \preceq L_{G}^{\dagger / 2}\left(\sum_{(i, j) \in E} y_{(i, j)}\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{T}\right) L_{G}^{\dagger / 2} \preceq(1+\epsilon) I
$$

We showed last time that this equation is satisfied for some vector y if and only if if subgraph H of G is a spectral sparsifier using the weights given by $y_{(i, j)}$.

$$
(1-\epsilon) L_{G} \preceq L_{H} \preceq(1+\epsilon) L_{G} .
$$

In the following algorithm, the two weight matrices W_{t} and \tilde{W}_{t} ensure that the resulting sparse sum does not get larger than $(1+\epsilon) I$ and does not get smaller than $(1-\epsilon) I$.

```
Algorithm 2: Algorithm for Feasibility
    \(W_{1} \leftarrow I, \tilde{W}_{1} \leftarrow I\)
    for \(t \leftarrow 1\) to \(T\) do
        \(P_{t} \leftarrow \frac{W_{t}}{\operatorname{tr}\left(W_{t}\right)}, \tilde{P}_{t} \leftarrow \frac{\tilde{W}_{t}}{\operatorname{tr}\left(\tilde{W}_{t}\right)}\)
        Run oracle to find \(y_{t}\) such that only one \(i\) st \(y_{t}(i)=\alpha_{t} \geq 0, \alpha_{t} P_{t} \bullet B_{i t} \leq(1+\epsilon)\),
        \(\alpha \tilde{P}_{t} \bullet B_{i t} \geq(1-\epsilon)\)
        \(W_{t} \leftarrow \exp \left(\frac{\epsilon}{\rho} \sum_{k=1}^{t} \sum_{i=1}^{m} y_{k}(i) B_{i}\right)\)
        \(\tilde{W}_{t} \leftarrow \exp \left(-\frac{\epsilon}{\rho} \sum_{k=1}^{t} \sum_{i=1}^{m} y_{k}(i) B_{i}\right)\)
    end
    return \(\bar{y}=\frac{1}{T} \sum_{t=1}^{T} y_{t}\)
```

An upper bound on the number on the number of nonzeros in \bar{y} is T because at every timestep we increase exactly one index of \bar{y}. We also notice that $\frac{1}{\rho} \sum_{i=1}^{m} y_{t}(i) B_{i}$ plays the role of M_{t} from matrix multiplicative weights in the algorithm above since

$$
\alpha_{t} \operatorname{tr}\left(B_{i}\right) \leq \rho \Longrightarrow 0 \preceq \frac{1}{\rho} \sum_{i=1}^{m} y_{t}(i) B_{i} \preceq I
$$

It then follows that

$$
\sum_{t=1}^{T} P_{t} \bullet\left(\frac{1}{\rho} \sum_{i=1}^{m} y(i) B_{i}\right) \leq \frac{T(1+\epsilon)}{\rho}
$$

Theorem 5 guarantees that

$$
\sum_{t=1}^{T} P_{t} \bullet\left(\frac{1}{\rho} \sum_{i=1}^{m} y_{t}(i) B_{i}\right) \geq \frac{1}{1+\epsilon} \lambda_{\max }\left(\frac{1}{\rho} \sum_{t=1}^{T} \sum_{i=1}^{m} y_{t}(i) B_{i}\right)-\frac{1}{\epsilon} \ln n
$$

If we choose $T=\frac{(1+\epsilon) \rho}{\epsilon^{2}} \ln n$, we have that

$$
\begin{aligned}
\frac{1}{1+\epsilon} \lambda_{\max }\left(\frac{1}{\rho} \sum_{t=1}^{T} \sum_{i=1}^{m} y_{t}(i) B_{i}\right)-\frac{1}{\epsilon} \ln n & \leq \sum_{t=1}^{T} P_{t} \bullet\left(\frac{1}{\rho} \sum_{i=1}^{m} y(i) B_{i}\right) \leq \frac{T(1+\epsilon)}{\rho} \\
\frac{T}{\rho(1+\epsilon)} \lambda_{\max }\left(\sum_{i=1}^{m} \bar{y}(i) B_{i}\right)-\frac{1}{\epsilon} \ln n & \leq \frac{T(1+\epsilon)}{\rho} \\
\lambda_{\max }\left(\sum_{i=1}^{m} \bar{y}(i) B_{i}\right) & \leq(1+\epsilon)^{2}+\frac{(1+\epsilon) \rho}{T \epsilon} \ln n \\
& \leq(1+\epsilon)^{2}+\epsilon \\
& \leq(1+4 \epsilon) .
\end{aligned}
$$

Similarly, we can show that

$$
\lambda_{\min }\left(\sum_{i=1}^{m} \bar{y}(i) B_{i}\right) \geq 1-4 \epsilon,
$$

so that we have

$$
(1-4 \epsilon) I \preceq \sum_{i=1}^{m} \bar{y}(i) B_{i} \preceq(1+4 \epsilon) I .
$$

As stated above, \bar{y} has at most $T=O\left(\frac{\rho}{\epsilon^{2}} \ln n\right)$ nonzeroes. In the lecture we did not have time to show the lemma below, which states that we can find an oracle with $\rho=O\left(\frac{(1+\epsilon) n}{\epsilon}\right)$, which implies $O\left((n \ln n) / \epsilon^{3}\right)$ nonzeroes. It is possible to modify the algorithm to obtain $O\left((n \ln n) / \epsilon^{2}\right)$ nonzeroes.

Lemma 6 There is an oracle with width $\rho=O\left(\frac{(1+\epsilon) n}{\epsilon}\right)$.
Proof: \quad Recall that the oracle needs to find i and α such that $\alpha P \bullet B_{i} \leq 1+\epsilon, \alpha \tilde{P} \bullet B_{i} \geq$ $1-\epsilon$, and $\alpha \operatorname{tr}\left(B_{i}\right) \leq \rho=(1+\epsilon) n / \epsilon$.

Define $\tilde{p}_{i}=B_{i} \bullet \tilde{P}$. Then $\tilde{p}_{i} \geq 0$ since $P \succeq 0$ and $B_{i} \succeq 0$. Also

$$
\sum_{i=1}^{n} \tilde{p}_{i}=\tilde{P} \bullet\left(\sum_{i=1}^{n} B_{i}\right)=\tilde{P} \bullet I=\operatorname{tr}(\tilde{P})=1 .
$$

So \tilde{p}_{i} is a probability distribution.

Then

$$
E_{i}\left[\frac{\operatorname{tr}\left(B_{i}\right)}{\tilde{p}_{i}}\right]=\sum_{i=1}^{m} \operatorname{tr}\left(B_{i}\right)=\operatorname{tr}(I)=n
$$

so that

$$
\operatorname{Pr}\left[\frac{\operatorname{tr}\left(B_{i}\right)}{\tilde{p}_{i}} \leq \frac{(1+\epsilon) n}{\epsilon}\right]=1-\operatorname{Pr}\left[\frac{\operatorname{tr}\left(B_{i}\right)}{\tilde{p}_{i}}>\frac{(1+\epsilon) n}{\epsilon}\right]>1-\frac{\epsilon}{1+\epsilon}=\frac{1}{1+\epsilon}
$$

by Markov's inequality. Similarly,

$$
E_{i}\left[\frac{P \bullet B_{i}}{\tilde{p}_{i}}\right]=\sum_{i=1}^{m} P \bullet B_{i}=P \bullet I=\operatorname{tr}(P)=1
$$

so that

$$
\operatorname{Pr}\left[\frac{P \bullet B_{i}}{\tilde{p}_{i}} \leq 1+\epsilon\right]=1-\operatorname{Pr}\left[\frac{P \bullet B_{i}}{\tilde{p}_{i}}>1+\epsilon\right]>1-\frac{1}{1+\epsilon}
$$

again by Markov's inequality.
So there must exist an index i such that both

$$
\frac{P \bullet B_{i}}{\tilde{p}_{i}} \leq 1+\epsilon \text { and } \frac{\operatorname{tr}\left(B_{i}\right)}{\tilde{p}_{i}} \leq \frac{(1+\epsilon) n}{\epsilon} \equiv \rho
$$

Thus if we set $\alpha=1 / \tilde{p}_{i}$, we get that $\alpha P \bullet B_{i} \leq 1+\epsilon, \alpha \operatorname{tr}\left(B_{i}\right) \leq \rho$, and

$$
\alpha \tilde{P} \bullet B_{i}=\frac{1}{\tilde{p}_{i}} \tilde{P} \bullet B_{i}=1 \geq 1-\epsilon
$$

where the final equation follows by the definition of \tilde{p}_{i}.

[^0]: ${ }^{0}$ This lecture is drawn from Arora and Kale 2016 http://dl.acm.org/citation.cfm?doid=2837020 Kale's thesis http://www.satyenkale.com/papers/thesis.pdf and de Carli Silva, Harvey, and Sato 2015 https://www.cs.ubc.ca/~nickhar/Publications/SparsifierMMWUM/SparsifierMMWUM.pdf

