
ORIE 6334 Spectral Graph Theory November 3, 2016

Lecture 21

Lecturer: David P. Williamson Scribe: Seung Won (Wilson) Yoo

1 Matrix Multiplicative Weights

Just like matrix Chernoff bounds were a generalization of scalar Chernoff bounds, the
multiplicative weights algorithm can be generalized to matrices. Recall that in the setup
for the multiplicative weight update algorithm, we had a sequence of time steps t = 1, . . . , T ;
in each time step t, we made a decision i ∈ {1...N} and got a value vt(i) ∈ [0, 1]. After we
made a decision in time step t, we got to see all the values

In matrix multiplicative weights, we make a decision u ∈ Rn, ||u|| = 1 and get a value
uTMtu where 0 � Mt � I, Mt ∈ Rn×n, so that uTMtu ∈ [0, 1]. As with multiplicative
weights, we make a randomized decision for the vector u based on some weights. We now
maintain a weight matrix Wt ∈ Rn×n, Wt � 0. Let Pt = Wt

tr(Wk)
so that tr(Pt) = 1 and

Pt � 0. If λit are eigenvalues of Pt, and xit are the corresponding orthonormal eigenectors,
then Pt =

∑n
i=1 λitxitx

T
it, λit ≥ 0,

∑n
i=1 λit = 1; that is, Pt is a discrete distribution over

the vectors xit, and we will choose the vector xit with probability λit.

Algorithm 1: Matrix Multiplicative Weights

Wt ← I
for t← 1 to T do

Pt ← Wt
tr(Wt)

Make decision ut = xit with prob. λit for xit, λit eigenvectors/eigenvalues of Pt
Get value uTt Mtut
Wt+1 ← exp(ε

∑T
k=1Mk).

end

This is a generalization of the multiplicative weights algorithm as one can think of all of
the matrices as diagonal, and the values that are associated with each of the n decisions as
each entry on the diagonal of Mt. In this case, the weights are maintained on the diagonal
of Wt as well.

We introduce a new piece of notation:

A •B ≡
∑
i,j

aijbij , A = (aij), B = (bij)

0This lecture is drawn from Arora and Kale 2016 http://dl.acm.org/citation.cfm?doid=2837020;
Kale’s thesis http://www.satyenkale.com/papers/thesis.pdf; and de Carli Silva, Harvey, and Sato 2015
https://www.cs.ubc.ca/~nickhar/Publications/SparsifierMMWUM/SparsifierMMWUM.pdf.

21-1

http://dl.acm.org/citation.cfm?doid=2837020
http://www.satyenkale.com/papers/thesis.pdf
https://www.cs.ubc.ca/~nickhar/Publications/SparsifierMMWUM/SparsifierMMWUM.pdf


Then the expected value of the algorithm is:

T∑
t=1

n∑
i=1

λit(x
T
itMtxit) =

T∑
t=1

n∑
i=1

λit(xitx
T
it •Mt)

=

T∑
t=1

(

n∑
i=1

λitxitx
T
it) •Mt)

=
T∑
t=1

Pt •Mt.

We want to show that the algorithm does as well as any fixed decision u, ||u|| = 1. Note
that for a fixed decision u,

T∑
t=1

uTMtu = uT

(
T∑
t=1

Mt

)
u ≤ max

u:||u||=1
uT

(
T∑
t=1

Mt

)
u = λmax

(
T∑
t=1

Mt

)
.

Thus the best fixed decision is the eigenvector corresponding to the maximum eigenvalue
of
∑T

t=1Mt.
To carry out our analysis, we need the following facts.

Theorem 1 (Golden-Thompson Inequality)

tr(exp(A+B)) ≤ tr(exp(A) exp(B)).

Claim 2 tr(AB) = A •B for either A,B symmetric

Claim 3 X •A ≤ X •B if A � B, X � 0.

Claim 4 If 0 � A � I, then

exp(εA) � I + (eε − 1)A.

We can now prove a theorem analogous to the one we proved for the multiplicative
weights update algorithm.

Theorem 5 Let 0 ≤ ε ≤ 1
2 . Then

∑T
t=1 Pt ·Mt ≥ 1

1+ελmax(
∑T

t=1Mt)− 1
ε ln n.

Proof: The proof mirrors that of the scalar multiplicative weights algorithm’s proof.
We start by getting an upper and lower bound on tr(WT+1).

tr(Wt+1) = tr

(
exp

(
ε

t∑
k=1

Mk

))

≤ tr

(
exp

(
ε

t−1∑
k=1

Mk

)
exp(εMt)

)
= Wt • exp(εMt)

= tr(Wt)Pt • exp(εMt)

≤ tr(Wt)Pt • (I + (eε − 1)Mt)

= tr(Wt)(1 + (eε − 1)Pt •Mt)

≤ tr(Wt)(exp(eε − 1)Pt •Mt)).

21-2



The first inequality follows from Golden-Thompson, the second follows from Claims 3 and
4 combined, and the third follows from 1 + x ≤ exp(x). We can determine tr(WT+1) by a
telescoping product, getting that

tr(WT+1) ≤ tr(W1) exp

(
(eε − 1)

T∑
t=1

Pt •Mt

)
= n exp

(
(eε − 1)

T∑
t=1

Pt ·Mt

)
.

For the lower bound,

tr(WT+1) ≥ λmax(WT+1)

= λmax

(
exp

(
ε

T∑
t=1

Mt

))

= exp

(
λmax

(
ε

T∑
t=1

Mt

))
.

The last step follows from the fact that taking maximum eigenvalue of a matrix derived by
exponentiating all of the eigenvalues is the same as taking the exponential of the maximum
eigenvalue.

Given the upper bound and lower bound on tr(WT+1), we then get

n exp

(
(eε − 1)

T∑
t=1

Pt •Mt

)
≥ exp

(
λmax

(
ε

T∑
t=1

Mt

))
.

Taking the log of both sides and rearranging, we get

T∑
t=1

Pt ·Mt ≥
ε

eε − 1
λmax

(
T∑
t=1

Mt

)
− 1

eε − 1
lnn

≥ 1

1 + ε
λmax

(
T∑
t=1

Mt

)
− 1

ε
lnn.

In the last inequality we use eε − 1 ≤ ε(1 + ε), for 0 ≤ ε ≤ 1
2 , and eε − 1 ≥ ε. �

2 A Feasibility Problem and Application to Spectral Sparsi-
fication

Just as we did with the multiplicative weights algorithm, we now want to apply matrix
multiplicative weights to a feasibility problem. We do so here as follows. Suppose we have
Bi, i = 1, . . . ,m, with Bi � 0 for all i, and

∑m
i=1Bi = I. We want to find a sparse weighting

y ∈ Rm ≥ 0 such that (1 − ε)I �
∑m

i=1 y(i)Bi � (1 + ε)I. Assume we have an oracle such
that given P, P̃ � 0 with tr(P ) = tr(P̃ ) = 1, the oracle returns a y such that y(i) 6= 0 at
only one entry i, y(i) = α and αP •Bi ≤ (1 + ε) and αP̃ •Bi ≥ (1− ε).

We define the width of the oracle as

ρ ≡ max
y
α tr(Bi)

21-3



over all y returned by oracle.
The application to spectral sparsification is as follows. We have m matrices, and one

matrix for every edge in our graph. Let us index those matrices by the edges in our graph:

B(i,j) = L
†/2
G (ei − ej)(ei − ej)TL†/2G

We want the sum of them to be the identity matrix. We showed it last time but we show
it again. ∑

(i,j)∈E

B(i,j) = L
†/2
G (

∑
(i,j)∈E

(ei − ej)(ei − ej)T )L
†/2
G

= L
†/2
G LGL

†/2
G

= I∗

(Recall that this is the identity when multiplied by any vector orthogonal to e.) So what’s
our sparse solution going to be? If this algorithm works, we get a sparse y such that

(1− ε)I � L†/2G

 ∑
(i,j)∈E

y(i,j)(ei − ej)(ei − ej)T
L

†/2
G � (1 + ε)I.

We showed last time that this equation is satisfied for some vector y if and only if if subgraph
H of G is a spectral sparsifier using the weights given by y(i,j).

(1− ε)LG � LH � (1 + ε)LG.

In the following algorithm, the two weight matrices Wt and W̃t ensure that the resulting
sparse sum does not get larger than (1 + ε)I and does not get smaller than (1− ε)I.

Algorithm 2: Algorithm for Feasibility

W1 ← I, W̃1 ← I
for t← 1 to T do

Pt ← Wt
tr(Wt)

, P̃t ← W̃t

tr(W̃t)

Run oracle to find yt such that only one i st yt(i) = αt ≥ 0, αtPt •Bit ≤ (1 + ε),
αP̃t •Bit ≥ (1− ε)
Wt ← exp( ερ

∑t
k=1

∑m
i=1 yk(i)Bi)

W̃t ← exp(− ε
ρ

∑t
k=1

∑m
i=1 yk(i)Bi)

end

return ȳ = 1
T

∑T
t=1 yt

An upper bound on the number on the number of nonzeros in ȳ is T because at every
timestep we increase exactly one index of ȳ. We also notice that 1

ρ

∑m
i=1 yt(i)Bi plays the

role of Mt from matrix multiplicative weights in the algorithm above since

αt tr(Bi) ≤ ρ =⇒ 0 � 1

ρ

m∑
i=1

yt(i)Bi � I.

21-4



It then follows that
T∑
t=1

Pt •

(
1

ρ

m∑
i=1

y(i)Bi

)
≤ T (1 + ε)

ρ
.

Theorem 5 guarantees that

T∑
t=1

Pt •

(
1

ρ

m∑
i=1

yt(i)Bi

)
≥ 1

1 + ε
λmax

(
1

ρ

T∑
t=1

m∑
i=1

yt(i)Bi

)
− 1

ε
lnn.

If we choose T = (1+ε)ρ
ε2

lnn, we have that

1

1 + ε
λmax

(
1

ρ

T∑
t=1

m∑
i=1

yt(i)Bi

)
− 1

ε
lnn ≤

T∑
t=1

Pt •

(
1

ρ

m∑
i=1

y(i)Bi

)
≤ T (1 + ε)

ρ

T

ρ(1 + ε)
λmax

(
m∑
i=1

ȳ(i)Bi

)
− 1

ε
lnn ≤ T (1 + ε)

ρ

λmax

(
m∑
i=1

ȳ(i)Bi

)
≤ (1 + ε)2 +

(1 + ε)ρ

Tε
lnn

≤ (1 + ε)2 + ε

≤ (1 + 4ε).

Similarly, we can show that

λmin

(
m∑
i=1

ȳ(i)Bi

)
≥ 1− 4ε,

so that we have

(1− 4ε)I �
m∑
i=1

ȳ(i)Bi � (1 + 4ε)I.

As stated above, ȳ has at most T = O( ρ
ε2

lnn) nonzeroes. In the lecture we did not have

time to show the lemma below, which states that we can find an oracle with ρ = O( (1+ε)nε ),
which implies O((n lnn)/ε3) nonzeroes. It is possible to modify the algorithm to obtain
O((n lnn)/ε2) nonzeroes.

Lemma 6 There is an oracle with width ρ = O( (1+ε)nε ).

Proof: Recall that the oracle needs to find i and α such that αP •Bi ≤ 1 + ε, αP̃ •Bi ≥
1− ε, and α tr(Bi) ≤ ρ = (1 + ε)n/ε.

Define p̃i = Bi • P̃ . Then p̃i ≥ 0 since P � 0 and Bi � 0. Also

n∑
i=1

p̃i = P̃ •

(
n∑
i=1

Bi

)
= P̃ • I = tr(P̃ ) = 1.

So p̃i is a probability distribution.

21-5



Then

Ei

[
tr(Bi)

p̃i

]
=

m∑
i=1

tr(Bi) = tr(I) = n,

so that

Pr

[
tr(Bi)

p̃i
≤ (1 + ε)n

ε

]
= 1− Pr

[
tr(Bi)

p̃i
>

(1 + ε)n

ε

]
> 1− ε

1 + ε
=

1

1 + ε
,

by Markov’s inequality. Similarly,

Ei

[
P •Bi
p̃i

]
=

m∑
i=1

P •Bi = P • I = tr(P ) = 1,

so that

Pr

[
P •Bi
p̃i

≤ 1 + ε

]
= 1− Pr

[
P •Bi
p̃i

> 1 + ε

]
> 1− 1

1 + ε
,

again by Markov’s inequality.
So there must exist an index i such that both

P •Bi
p̃i

≤ 1 + ε and
tr(Bi)

p̃i
≤ (1 + ε)n

ε
≡ ρ.

Thus if we set α = 1/p̃i, we get that αP •Bi ≤ 1 + ε, α tr(Bi) ≤ ρ, and

αP̃ •Bi =
1

p̃i
P̃ •Bi = 1 ≥ 1− ε,

where the final equation follows by the definition of p̃i. �

21-6


	Matrix Multiplicative Weights
	A Feasibility Problem and Application to Spectral Sparsification

