ORIE 6334 Spectral Graph Theory

November 3, 2016

Lecture 21

Lecturer: David P. Williamson

```
Scribe: Seung Won (Wilson) Yoo
```

1 Matrix Multiplicative Weights

Just like matrix Chernoff bounds were a generalization of scalar Chernoff bounds, the multiplicative weights algorithm can be generalized to matrices. Recall that in the setup for the multiplicative weight update algorithm, we had a sequence of time steps $t = 1, \ldots, T$; in each time step t, we made a decision $i \in \{1...N\}$ and got a value $v_t(i) \in [0, 1]$. After we made a decision in time step t, we got to see all the values

In matrix multiplicative weights, we make a decision $u \in \mathbb{R}^n$, ||u|| = 1 and get a value $u^T M_t u$ where $0 \leq M_t \leq I$, $M_t \in \mathbb{R}^{n \times n}$, so that $u^T M_t u \in [0, 1]$. As with multiplicative weights, we make a randomized decision for the vector u based on some weights. We now maintain a weight matrix $W_t \in \mathbb{R}^{n \times n}$, $W_t \geq 0$. Let $P_t = \frac{W_t}{\operatorname{tr}(W_k)}$ so that $\operatorname{tr}(P_t) = 1$ and $P_t \geq 0$. If λ_{it} are eigenvalues of P_t , and x_{it} are the corresponding orthonormal eigenectors, then $P_t = \sum_{i=1}^n \lambda_{it} x_{it} x_{it}^T$, $\lambda_{it} \geq 0$, $\sum_{i=1}^n \lambda_{it} = 1$; that is, P_t is a discrete distribution over the vectors x_{it} , and we will choose the vector x_{it} with probability λ_{it} .

Algorithm 1: Matrix Multiplicative Weights
$W_t \leftarrow I$
for $t \leftarrow 1$ to T do
$P_t \leftarrow rac{W_t}{tr(W_t)}$
Make decision $u_t = x_{it}$ with prob. λ_{it} for x_{it}, λ_{it} eigenvectors/eigenvalues of P_t
Get value $u_t^T M_t u_t$
$W_{t+1} \leftarrow \exp(\epsilon \sum_{k=1}^{T} M_k).$
end

This is a generalization of the multiplicative weights algorithm as one can think of all of the matrices as diagonal, and the values that are associated with each of the n decisions as each entry on the diagonal of M_t . In this case, the weights are maintained on the diagonal of W_t as well.

We introduce a new piece of notation:

$$A \bullet B \equiv \sum_{i,j} a_{ij} b_{ij}, \ A = (a_{ij}), B = (b_{ij})$$

⁰This lecture is drawn from Arora and Kale 2016 http://dl.acm.org/citation.cfm?doid=2837020; Kale's thesis http://www.satyenkale.com/papers/thesis.pdf; and de Carli Silva, Harvey, and Sato 2015 https://www.cs.ubc.ca/~nickhar/Publications/SparsifierMMWUM/SparsifierMMWUM.pdf.

Then the expected value of the algorithm is:

$$\sum_{t=1}^{T} \sum_{i=1}^{n} \lambda_{it} (x_{it}^{T} M_{t} x_{it}) = \sum_{t=1}^{T} \sum_{i=1}^{n} \lambda_{it} (x_{it} x_{it}^{T} \bullet M_{t})$$
$$= \sum_{t=1}^{T} (\sum_{i=1}^{n} \lambda_{it} x_{it} x_{it}^{T}) \bullet M_{t})$$
$$= \sum_{t=1}^{T} P_{t} \bullet M_{t}.$$

We want to show that the algorithm does as well as any fixed decision u, ||u|| = 1. Note that for a fixed decision u,

$$\sum_{t=1}^{T} u^T M_t u = u^T \left(\sum_{t=1}^{T} M_t \right) u \le \max_{u:||u||=1} u^T \left(\sum_{t=1}^{T} M_t \right) u = \lambda_{\max} \left(\sum_{t=1}^{T} M_t \right).$$

Thus the best fixed decision is the eigenvector corresponding to the maximum eigenvalue of $\sum_{t=1}^{T} M_t$. To carry out our analysis, we need the following facts.

Theorem 1 (Golden-Thompson Inequality)

$$\operatorname{tr}(\exp(A+B)) \le \operatorname{tr}(\exp(A)\exp(B)).$$

Claim 2 $tr(AB) = A \bullet B$ for either A, B symmetric

Claim 3 $X \bullet A \leq X \bullet B$ if $A \leq B$, $X \succeq 0$.

Claim 4 If $0 \leq A \leq I$, then

$$\exp(\epsilon A) \leq I + (e^{\epsilon} - 1)A.$$

We can now prove a theorem analogous to the one we proved for the multiplicative weights update algorithm.

Theorem 5 Let $0 \le \epsilon \le \frac{1}{2}$. Then $\sum_{t=1}^{T} P_t \cdot M_t \ge \frac{1}{1+\epsilon} \lambda_{max}(\sum_{t=1}^{T} M_t) - \frac{1}{\epsilon} \ln n$.

The proof mirrors that of the scalar multiplicative weights algorithm's proof. **Proof:** We start by getting an upper and lower bound on $tr(W_{T+1})$.

$$tr(W_{t+1}) = tr\left(\exp\left(\epsilon\sum_{k=1}^{t}M_{k}\right)\right)$$

$$\leq tr\left(\exp\left(\epsilon\sum_{k=1}^{t-1}M_{k}\right)\exp(\epsilon M_{t})\right)$$

$$= W_{t} \bullet \exp(\epsilon M_{t})$$

$$= tr(W_{t})P_{t} \bullet \exp(\epsilon M_{t})$$

$$\leq tr(W_{t})P_{t} \bullet (I + (e^{\epsilon} - 1)M_{t})$$

$$= tr(W_{t})(1 + (e^{\epsilon} - 1)P_{t} \bullet M_{t})$$

$$\leq tr(W_{t})(\exp(e^{\epsilon} - 1)P_{t} \bullet M_{t})).$$

The first inequality follows from Golden-Thompson, the second follows from Claims 3 and 4 combined, and the third follows from $1 + x \leq \exp(x)$. We can determine $\operatorname{tr}(W_{T+1})$ by a telescoping product, getting that

$$\operatorname{tr}(W_{T+1}) \le \operatorname{tr}(W_1) \exp\left(\left(e^{\epsilon} - 1\right) \sum_{t=1}^T P_t \bullet M_t\right) = n \exp\left(\left(e^{\epsilon} - 1\right) \sum_{t=1}^T P_t \cdot M_t\right).$$

For the lower bound,

$$tr(W_{T+1}) \ge \lambda_{\max}(W_{T+1})$$
$$= \lambda_{\max}\left(\exp\left(\epsilon \sum_{t=1}^{T} M_{t}\right)\right)$$
$$= \exp\left(\lambda_{\max}\left(\epsilon \sum_{t=1}^{T} M_{t}\right)\right).$$

The last step follows from the fact that taking maximum eigenvalue of a matrix derived by exponentiating all of the eigenvalues is the same as taking the exponential of the maximum eigenvalue.

Given the upper bound and lower bound on $tr(W_{T+1})$, we then get

$$n \exp\left(\left(e^{\epsilon} - 1\right) \sum_{t=1}^{T} P_t \bullet M_t\right) \ge \exp\left(\lambda_{max}\left(\epsilon \sum_{t=1}^{T} M_t\right)\right).$$

Taking the log of both sides and rearranging, we get

$$\sum_{t=1}^{T} P_t \cdot M_t \ge \frac{\epsilon}{e^{\epsilon} - 1} \lambda_{\max} \left(\sum_{t=1}^{T} M_t \right) - \frac{1}{e^{\epsilon} - 1} \ln n$$
$$\ge \frac{1}{1 + \epsilon} \lambda_{\max} \left(\sum_{t=1}^{T} M_t \right) - \frac{1}{\epsilon} \ln n.$$

In the last inequality we use $e^{\epsilon} - 1 \leq \epsilon(1 + \epsilon)$, for $0 \leq \epsilon \leq \frac{1}{2}$, and $e^{\epsilon} - 1 \geq \epsilon$.

2 A Feasibility Problem and Application to Spectral Sparsification

Just as we did with the multiplicative weights algorithm, we now want to apply matrix multiplicative weights to a feasibility problem. We do so here as follows. Suppose we have $B_i, i = 1, \ldots, m$, with $B_i \succeq 0$ for all i, and $\sum_{i=1}^m B_i = I$. We want to find a sparse weighting $y \in \mathbb{R}^m \ge 0$ such that $(1 - \epsilon)I \preceq \sum_{i=1}^m y(i)B_i \preceq (1 + \epsilon)I$. Assume we have an oracle such that given $P, \tilde{P} \succeq 0$ with $\operatorname{tr}(P) = \operatorname{tr}(\tilde{P}) = 1$, the oracle returns a y such that $y(i) \neq 0$ at only one entry $i, y(i) = \alpha$ and $\alpha P \bullet B_i \le (1 + \epsilon)$ and $\alpha \tilde{P} \bullet B_i \ge (1 - \epsilon)$.

We define the *width* of the oracle as

$$\rho \equiv \max_{y} \alpha \, tr(B_i)$$

over all y returned by oracle.

The application to spectral sparsification is as follows. We have m matrices, and one matrix for every edge in our graph. Let us index those matrices by the edges in our graph:

$$B_{(i,j)} = L_G^{\dagger/2} (e_i - e_j) (e_i - e_j)^T L_G^{\dagger/2}$$

We want the sum of them to be the identity matrix. We showed it last time but we show it again.

$$\sum_{(i,j)\in E} B_{(i,j)} = L_G^{\dagger/2} (\sum_{(i,j)\in E} (e_i - e_j)(e_i - e_j)^T) L_G^{\dagger/2}$$
$$= L_G^{\dagger/2} L_G L_G^{\dagger/2}$$
$$= I^*$$

(Recall that this is the identity when multiplied by any vector orthogonal to e.) So what's our sparse solution going to be? If this algorithm works, we get a sparse y such that

$$(1-\epsilon)I \preceq L_G^{\dagger/2} \left(\sum_{(i,j)\in E} y_{(i,j)} (e_i - e_j) (e_i - e_j)^T \right) L_G^{\dagger/2} \preceq (1+\epsilon)I.$$

We showed last time that this equation is satisfied for some vector y if and only if if subgraph H of G is a spectral sparsifier using the weights given by $y_{(i,j)}$.

$$(1-\epsilon)L_G \preceq L_H \preceq (1+\epsilon)L_G.$$

In the following algorithm, the two weight matrices W_t and \tilde{W}_t ensure that the resulting sparse sum does not get larger than $(1 + \epsilon)I$ and does not get smaller than $(1 - \epsilon)I$.

Algorithm 2: Algorithm for Feasibility

$$\begin{split} W_{1} \leftarrow I, \tilde{W}_{1} \leftarrow I \\ \textbf{for } t \leftarrow 1 \textbf{ to } T \textbf{ do} \\ P_{t} \leftarrow \frac{W_{t}}{\text{tr}(W_{t})}, \tilde{P}_{t} \leftarrow \frac{\tilde{W}_{t}}{\text{tr}(\tilde{W}_{t})} \\ \text{Run oracle to find } y_{t} \textbf{ such that only one } i \textbf{ st } y_{t}(i) = \alpha_{t} \geq 0, \ \alpha_{t}P_{t} \bullet B_{it} \leq (1 + \epsilon), \\ \alpha \tilde{P}_{t} \bullet B_{it} \geq (1 - \epsilon) \\ W_{t} \leftarrow \exp(\frac{\epsilon}{\rho} \sum_{k=1}^{t} \sum_{i=1}^{m} y_{k}(i)B_{i}) \\ \tilde{W}_{t} \leftarrow \exp(-\frac{\epsilon}{\rho} \sum_{k=1}^{t} \sum_{i=1}^{m} y_{k}(i)B_{i}) \\ \textbf{end} \\ \textbf{return } \bar{y} = \frac{1}{T} \sum_{t=1}^{T} y_{t} \end{split}$$

An upper bound on the number on the number of nonzeros in \bar{y} is T because at every timestep we increase exactly one index of \bar{y} . We also notice that $\frac{1}{\rho} \sum_{i=1}^{m} y_t(i)B_i$ plays the role of M_t from matrix multiplicative weights in the algorithm above since

$$\alpha_t \operatorname{tr}(B_i) \le \rho \implies 0 \preceq \frac{1}{\rho} \sum_{i=1}^m y_t(i) B_i \preceq I.$$

It then follows that

$$\sum_{t=1}^{T} P_t \bullet \left(\frac{1}{\rho} \sum_{i=1}^{m} y(i) B_i \right) \le \frac{T(1+\epsilon)}{\rho}.$$

Theorem 5 guarantees that

$$\sum_{t=1}^{T} P_t \bullet \left(\frac{1}{\rho} \sum_{i=1}^{m} y_t(i) B_i\right) \ge \frac{1}{1+\epsilon} \lambda_{\max} \left(\frac{1}{\rho} \sum_{t=1}^{T} \sum_{i=1}^{m} y_t(i) B_i\right) - \frac{1}{\epsilon} \ln n.$$

If we choose $T = \frac{(1+\epsilon)\rho}{\epsilon^2} \ln n$, we have that

$$\frac{1}{1+\epsilon}\lambda_{\max}\left(\frac{1}{\rho}\sum_{t=1}^{T}\sum_{i=1}^{m}y_{t}(i)B_{i}\right) - \frac{1}{\epsilon}\ln n \leq \sum_{t=1}^{T}P_{t} \bullet \left(\frac{1}{\rho}\sum_{i=1}^{m}y(i)B_{i}\right) \leq \frac{T(1+\epsilon)}{\rho}$$
$$\frac{T}{\rho(1+\epsilon)}\lambda_{\max}\left(\sum_{i=1}^{m}\bar{y}(i)B_{i}\right) - \frac{1}{\epsilon}\ln n \leq \frac{T(1+\epsilon)}{\rho}$$
$$\lambda_{\max}\left(\sum_{i=1}^{m}\bar{y}(i)B_{i}\right) \leq (1+\epsilon)^{2} + \frac{(1+\epsilon)\rho}{T\epsilon}\ln n$$
$$\leq (1+\epsilon)^{2} + \epsilon$$
$$\leq (1+4\epsilon).$$

Similarly, we can show that

$$\lambda_{\min}\left(\sum_{i=1}^{m} \bar{y}(i)B_i\right) \ge 1 - 4\epsilon,$$

so that we have

$$(1-4\epsilon)I \preceq \sum_{i=1}^{m} \bar{y}(i)B_i \preceq (1+4\epsilon)I.$$

As stated above, \bar{y} has at most $T = O(\frac{\rho}{\epsilon^2} \ln n)$ nonzeroes. In the lecture we did not have time to show the lemma below, which states that we can find an oracle with $\rho = O(\frac{(1+\epsilon)n}{\epsilon})$, which implies $O((n \ln n)/\epsilon^3)$ nonzeroes. It is possible to modify the algorithm to obtain $O((n \ln n)/\epsilon^2)$ nonzeroes.

Lemma 6 There is an oracle with width $\rho = O(\frac{(1+\epsilon)n}{\epsilon})$.

Proof: Recall that the oracle needs to find *i* and α such that $\alpha P \bullet B_i \leq 1 + \epsilon$, $\alpha \tilde{P} \bullet B_i \geq 1 - \epsilon$, and $\alpha \operatorname{tr}(B_i) \leq \rho = (1 + \epsilon)n/\epsilon$.

Define $\tilde{p}_i = B_i \bullet \tilde{P}$. Then $\tilde{p}_i \ge 0$ since $P \succeq 0$ and $B_i \succeq 0$. Also

$$\sum_{i=1}^{n} \tilde{p}_i = \tilde{P} \bullet \left(\sum_{i=1}^{n} B_i\right) = \tilde{P} \bullet I = \operatorname{tr}(\tilde{P}) = 1.$$

So \tilde{p}_i is a probability distribution.

Then

$$E_i\left[\frac{\operatorname{tr}(B_i)}{\tilde{p}_i}\right] = \sum_{i=1}^m \operatorname{tr}(B_i) = \operatorname{tr}(I) = n,$$

so that

$$\Pr\left[\frac{\operatorname{tr}(B_i)}{\tilde{p}_i} \le \frac{(1+\epsilon)n}{\epsilon}\right] = 1 - \Pr\left[\frac{\operatorname{tr}(B_i)}{\tilde{p}_i} > \frac{(1+\epsilon)n}{\epsilon}\right] > 1 - \frac{\epsilon}{1+\epsilon} = \frac{1}{1+\epsilon}$$

by Markov's inequality. Similarly,

$$E_i\left[\frac{P\bullet B_i}{\tilde{p}_i}\right] = \sum_{i=1}^m P\bullet B_i = P\bullet I = \operatorname{tr}(P) = 1,$$

so that

$$\Pr\left[\frac{P \bullet B_i}{\tilde{p}_i} \le 1 + \epsilon\right] = 1 - \Pr\left[\frac{P \bullet B_i}{\tilde{p}_i} > 1 + \epsilon\right] > 1 - \frac{1}{1 + \epsilon},$$

again by Markov's inequality.

So there must exist an index i such that both

$$\frac{P \bullet B_i}{\tilde{p}_i} \le 1 + \epsilon \text{ and } \frac{\operatorname{tr}(B_i)}{\tilde{p}_i} \le \frac{(1+\epsilon)n}{\epsilon} \equiv \rho.$$

Thus if we set $\alpha = 1/\tilde{p}_i$, we get that $\alpha P \bullet B_i \leq 1 + \epsilon$, $\alpha \operatorname{tr}(B_i) \leq \rho$, and

$$\alpha \tilde{P} \bullet B_i = \frac{1}{\tilde{p}_i} \tilde{P} \bullet B_i = 1 \ge 1 - \epsilon,$$

where the final equation follows by the definition of \tilde{p}_i .

-	_	_	-