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1 Chernoff bounds

Today we will look at a matrix analog of the standard scalar Chernoff bounds. This
matrix analog will be used in the next lecture when we talk about graph sparsification.
While we’re more interested in the application of the theorem than its proof, it’s still
useful to see the similarities and the differences of moving from the proof of the result
for scalars to the same result for matrices.

Scalar Chernoff bounds get used all over the place in theoretical computer sci-
ence, so much so that one now sees the phrase ”By a standard application of Cher-
noff bounds...” without even seeing the theorem references or the random variables
defined.

Theorem 1 ((Scalar) Chernoff bound) Let X1, X2, ..., Xk independent random vari-

ables with Xi ∈ [0, R]. Let µmin ≤ E
[∑k

i=1Xi

]
≤ µmax. Then for all δ ≥ 0,

Pr

[
k∑
i=1

Xi ≥ (1 + δ)µmax

]
≤
( eδ

(1 + δ)1+δ

)µmax/R

Pr

[
k∑
i=1

Xi ≤ (1− δ)µmin

]
≤
( e−δ

(1− δ)1−δ
)µmin/R

.

By a simple application of calculus, one can further show that if δ ≤ 1,

Pr

[
k∑
i=1

Xi ≥ (1 + δ)µmax

]
≤
( eδ

(1 + δ)1+δ

)µmax/R

≤ e−δµmax/3R

Pr

[
k∑
i=1

Xi ≤ (1− δ)µmin

]
≤
( e−δ

(1− δ)1−δ
)µmin/R

≤ e−δ
2µmax/2R

The corresponding matrix version looks remarkably similar, except for the dimen-
sion d of the matrix appearing in the bound.

0This lecture is extremely indebted to a lecture of Nick Harvey at the Sixth Cargèse Work-
shop on Combinatorial Optimization, http://www.cs.ubc.ca/~nickhar/Cargese2.pdf, as will be
completely obvious if you go look at his notes.
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Theorem 2 (Tropp 2011) Let X1, X2, ..., Xk be random symmetric d×d matrices.
s.t. 0 � Xi � R · I for some constant R. Suppose µminI �

∑k
i=1E [Xi] � µmaxI.

Then for all δ ≥ 0,

Pr

[
λmax

(
k∑
i=1

Xi

)
≥ (1 + δ)µmax

]
≤ d ·

( eδ

(1 + δ)1+δ

)µmax/R

Pr

[
λmin

(
k∑
i=1

Xi

)
≤ (1− δ)µmin

]
≤ d ·

( e−δ

(1− δ)1−δ
)µmin/R

.

Then if δ ≤ 1,

Pr

[
λmax

(
k∑
i=1

Xi

)
≥ (1 + δ)µmax

]
≤ d ·

( eδ

(1 + δ)1+δ

)µmax/R

≤ d · e−δµmax/3R

Pr

[
λmin

(
k∑
i=1

Xi

)
≤ (1− δ)µmin

]
≤ d ·

( e−δ

(1− δ)1−δ
)µmin/R

≤ d · e−δ2µmax/2R

2 Proof of scalar version

We now walk through the proof of the scalar version in order to set up the similarities
of the proof of the matrix version. We will use the following.

Theorem 3 (Markov’s inequality) For X a random variable s.t. X ≥ 0,

Pr [X ≥ a] ≤ E [X]

a
.

Proof: Since X is nonnegative, we have that

E [X] ≥ a · Pr [X ≥ a] .

2
We will show the following two claims.

Claim 4 For any θ > 0,

Pr

[
k∑
i=1

Xi ≥ t

]
≤ e−θt

k∏
i=1

E
[
eθXi

]
.

Claim 5 For X random variable X ∈ [0, 1],

E
[
eθX
]
≤ 1 + (eθ − 1)E [X] .
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Now let us prove the claims, and show how they imply the scalar Chernoff bound.
Proof of Claim 4:

Pr

[
k∑
i=1

Xi ≥ t

]
= Pr

[
k∑
i=1

θXi ≥ θt

]

= Pr

[
exp

(
k∑
i=1

θXi

)
≥ exp(θt)

]

≤ e−θt · E

[
exp

(
k∑
i=1

θXi

)]
by Markov’s inequality

= e−θt · E

[
k∏
i=1

exp(θXi)

]

= e−θt
k∏
i=1

E [exp(θXi)] ,

where the last equality follows by the independence of the Xi. 2

Proof of Claim 5: Because eθx is a convex function, we know that eθx ≤
1 + (eθ − 1)x for x ∈ [0, 1]. Hence,

E
[
eθx
]
≤ 1 + (eθ − 1)E [x] .

2

Proof of Theorem 1: We’ll only prove the upper bound, with R = 1. We can
show that

k∏
i=1

E

[
k∑
i=1

eθXi

]
≤

k∏
i=1

(
1 + (eθ − 1)E [Xi]

)
by Claim 5

= exp

(
k∑
i=1

log(1 + (eθ − 1)E [Xi])

)

≤ exp

(
k∑
i=1

(eθ − 1)E [Xi]

)
using log(1 + x) ≤ x

≤ exp[(eθ − 1)µmax].
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Applying Claim 4 to the above with with t = (1 + δ)µmax, θ = ln(1 + δ), we get

Pr

[
k∑
i=1

Xi ≥ (1 + δ)µmax

]
≤ exp[− ln(1 + δ) · (1 + δ)µmax] · exp(δµmax)

=
( eδ

(1 + δ)1+δ

)µmax

.

2

3 Concepts and facts needed for matrix version

We’d like to extend the same logic as used in the scalar version to matrices, but it
isn’t clear that some of the concepts we’ve used will carry through, like the convexity
of matrices, or what the log of a matrix even is. So before diving into the proof, we
need to think about what concepts extend and which ones don’t.

We first define the concepts of a spectral mapping. For function f , symmetric
matrix A, with eigenvalues λi and orthonormal eigenvectors x1, x2, ..., xn, recall that

A =
k∑
i=1

λixix
T
i = XDXT

for D = diag(λi), where X has xi as its ith column. Then we define f(A) ≡ Xf(D)XT

where f(D)ii = f(Dii); for example, for f(x) = xk, f(A) = f(Ak) = XDkXT , as
we’ve already seen. We can extend concepts of monotonicity and concavity to matrices
as follows.

Definition 1 Function f is operator monotone if A � B implies that f(A) � f(B).
f is operator concave if

f((1− α)A+ αB) � (1− α)f(A) + αf(B)

for α ∈ [0, 1] and for all A,B.

Sadly, f monotone does not imply that f is operator monotone, and f concave
does not imply that f is operator concave. /

To get around these problems we will use a careful combination of things that are
known to hold. Some facts we will need:

Fact 1 If f(x) ≤ g(x) for all x ∈ [l, u], then for symmetric A with λmin(A) ≥
l, λmin(A) ≤ u then f(A) � g(A).

Fact 2 If X, Y are random matrices and X � Y , then E [X] � E [Y ].
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Fact 3 (Weyl monotonicity) For A,B ∈ Rd×d symmetric, A � B, λi(A) ≤ λi(B)
for all i.

Corollary 6 If f is monotone, then A � B implies tr(f(A)) ≤ tr(f(B)).

Fact 4 log is operator concave.

Recall that A � 0 implies that A is positive definite (that is, for symmetric A, A
has all positive eigenvalues).

Definition 2 If A,B � 0, then A�B ≡ exp(log(A) + log(B)).

The following fact is the key ingredient to the proof.

Fact 5 If A1, A2, ..., Ak independent random matrices such that Ai � 0 for all i, then

E [tr(A1 � A2 � ...� Ak)] ≤ tr (E(A1)� E(A2)� ...� E(Ak)) .

4 Proof of matrix version

We can now give the proof of the matrix version of Chernoff bounds. We state the
following two claims so that the parallels with Claims 4 and 5 are clear.

Claim 7 For any θ > 0,

Pr

[
λmax(

k∑
i=1

Xi) ≥ t

]
≤ e−θt · tr

[
k⊙
i=1

E
[
eθXi

]]
.

Claim 8 Let X be random symmetric matrix such that 0 � X � I. Then

E
[
eθX
]
� I + (eθ − 1)E [X] .

We now give the proofs of these claims.
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Proof of Claim 7: The proof is somewhat analogous to the Proof of Claim 4.

Pr

[
λmax

(
k∑
i=1

Xi

)
≥ t

]
= Pr

[
λmax

(
k∑
i=1

θXi

)
≥ θt

]

= Pr

[
exp

(
λmax

(
k∑
i=1

θXi

))
≥ exp(θt)

]

≤ e−θt · E

[
exp

(
λmax

(
k∑
i=1

θXi

))]
by Markov’s inequality.

We notice that

exp

(
λmax

(
k∑
i=1

θXi

))
= λmax

(
exp

(
k∑
i=1

θXi

))
≤ tr

(
exp

(
k∑
i=1

θXi

))
,

by the properties of spectral mapping, and because the trace dominates the maximum
eigenvalue given that the matrices are positive semidefinite. Then

Pr

[
λmax

(
k∑
i=1

Xi

)
≥ t

]
≤ e−θt · E

[
tr

(
exp

(
k∑
i=1

θXi

))]

= e−θt · E

[
tr

(
exp

(
k∑
i=1

log eθXi

))]
= e−θt · E

[
tr(e−θX1 � e−θX2 � ...� e−θXk)

]
by definition of �

≤ e−θt · tr
(
E
[
e−θX1

]
� E

[
e−θX2

]
� ...� E

[
e−θXk

])
by Fact 5.

2

Proof of Claim 8: The proof is analogous to the proof of Claim 5. For x ∈ [0, 1],
eθx ≤ 1 + (eθ − 1)x by convexity. Since 0 � X � I, λmin(x) ≥ 0 and λmax(x) ≤ 1.
Then by Fact 1,

eθX ≤ I + (eθ − 1)X.

Then by Fact 2,
E
[
eθX
]
≤ I + (eθ − 1)E [X] .

2
We can now complete the proof of the Matrix Chernoff bound.

Proof of Theorem 2: We only prove the upper bound, and we assume R = 1.
Then by the operator concavity of the log function,

k∑
i=1

logE
[
eθXi

]
= k

k∑
i=1

1

k
logE

[
eθXi

]
� k log

(
k∑
i=1

1

k
E
[
eθXi

])
. (1)
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Then we have that

tr
(
E
[
eθX1

]
� ...� E

[
eθXk

])
= tr

(
exp

(
k∑
i=1

log
(
E
[
eθXi

])))
by definition of �

≤ tr

(
exp

(
k log

(
k∑
i=1

1

k
E
[
eθXi

])))
by 1 and Corollary 6

≤ d · λmax

(
exp

(
k log

(
k∑
i=1

1

k
E
[
eθXi

])))
since trace is at most dλmax

= d · exp

(
k log λmax

(
k∑
i=1

1

k
E
[
eθXi

]))
by operator mapping

≤ d · exp

(
k log λmax

(
I + (eθ − 1)

k∑
i=1

1

k
E
[
eθXi

]))
by Claim 8 and Weyl Monotonicity

= d · exp

(
k log

(
1 +

1

k
(eθ − 1) · λmax

(
k∑
i=1

E [Xi]

)))
≤ d · exp

((
eθ − 1

)
µmax

)
using log(1 + x) ≤ x.

Then by plugging in the above to 7 and using t = (1 + δ)µmax, θ = ln(1 + δ), we
get

Pr

[
λmax

(
k∑
i=1

Xi

)
≥ (1 + δ)µmax

]
≤ d · exp (− ln(1 + δ)(1 + δ)µmax) exp(δµmax))

= d ·
( eδ

(1 + δ)1+δ

)µmax

.

2
In the next lecture, we will apply this result to sampling edges from graphs to get

sparse versions of the graph.
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