
ORIE 6334 Spectral Graph Theory October 20, 2016

Lecture 17

Lecturer: David P. Williamson Scribe: Yingjie Bi

1 Approximate Potentials from Approximate Flow

In the last lecture, we presented a combinatorial algorithm to find potentials p that solve
the Laplacian system LGp = b. The electrical flow f∗ minimizes the energy

E(f) =
∑
{i,j}∈E

f2(i, j)r(i, j).

We showed that in each iteration the expected decrease in energy for the maintained flow
fk is

E[E(fk)− E(fk+1)] =
1

τ
E[gap(fk, pk)] ≥

1

τ
E[E(fk)− E(f∗)], (1)

where τ is the tree condition number, pk is the tree-defined potentials for fk, and

gap(f, p) = E(f)− (2bT p− pTLGp).

The above inequality (1) implies

E[E(fk+1)− E(f∗)] ≤
(

1− 1

τ

)
E[E(fk)− E(f∗)].

We also showed that the initial flow f0 satisfies

E(f0)− E(f∗) ≤ (stT (G)− 1)E(f∗).

Therefore, after k = τ ln(stT (G)τ/ε) iterations,

E[E(fk)− E(f∗)] ≤
(

1− 1

τ

)k
(stT (G)− 1)E(f∗)

≤ e− ln(stT (G)τ/ε)(stT (G)− 1)E(f∗)

≤ ε

τ
E(f∗),

where the inequality 1− x ≤ e−x is used in the second step.
In the following, we will see how to bound the error between the obtained approximate

potentials pk and the desired potentials p∗ = L+
Gb based on the above bound on energy.

Denote ‖x‖L =
√
xTLGx. We want to show that

‖pk − p∗‖L ≤ ε‖p∗‖L,
0This lecture is based in part on the paper by Kelner, Orecchia, Sidford, and Zhu from 2013,

https://arxiv.org/abs/1301.6628, and in part by a survey of Arora, Hazan, and Kale 2012 http:

//theoryofcomputing.org/articles/v008a006/v008a006.pdf.

17-1

https://arxiv.org/abs/1301.6628
http://theoryofcomputing.org/articles/v008a006/v008a006.pdf
http://theoryofcomputing.org/articles/v008a006/v008a006.pdf

so that the potentials pk are close to p∗ under ‖x‖L. Note that ‖p∗‖2L = pT∗ LGp∗ = E(f∗),
so we are trying to show that pk is within ε of the energy of the optimal electrical flow f∗.
We have that

‖pk − p∗‖2L = ‖pk − L+
Gb‖

2
L = (pk − L+

Gb)
TLG(pk − L+

Gb)

= pTkLGpk − 2pTkLGL
+
Gb+ pT∗ LGp∗

= −(2pTk b− pTkLGpk) + E(f∗) = gap(f∗, pk).

Observe that (1) also implies

E[gap(fk, pk)] = τE[E(fk)− E(fk+1)] ≤ τE[E(fk)− E(f∗)].

Hence

E[‖pk − p∗‖2L] = E[gap(f∗, pk)] = E[gap(fk, pk)]−E[E(fk)− E(f∗)]

≤ (τ − 1)E[E(fk)− E(f∗)] ≤ εE(f∗)

= εpT∗ LGp∗ = ε‖p∗‖2L,

and E[‖pk − p∗‖L] ≤
√
ε‖p∗‖L.

There are some research questions related to the above algorithm:

• Can this algorithm be made deterministic without changing the running time?

• Can we find a nearly-linear-time Laplacian solver without using low-stretch trees?
The paper proposing the above algorithm claimed that the low-stretch tree can be
replaced by the Bartal tree, but it did not spell out the details.

2 The Multiplicative Weights Update Algorithm

In this section, we will introduce a very useful algorithm that has been repeatedly discovered
by different people in many fields. At first glance, this algorithm seems have no relationship
with the main subject of our course. However, in the future lecture, we will demonstrate a
fast algorithm for maximum flows combining electrical flows and the idea here.

Assume at each time step, there are N choices for a decision to be made. At time t,
we will gain an unknown value vt(i) ∈ [0, 1] for making decision i, and the values of all
decisions will be revealed after the decision is made. Surprisingly, there is a simple strategy
which guarantees to do as well as the best fixed decision over the time.

In the multiplicative weights update algorithm (Algorithm 1), a weight is maintained
for each decision i. If we let wt(i) be weight for decision i at start of time step t and

Wt =
N∑
i=1

wt(i),

then decision i is chosen with probability proportional to wt(i), so the probability we make
decision i at time t is pt(i) = wt(i)/Wt. After making the decision, the weights will be up-
dated so as to be larger for decisions that get larger values. When the algorithm terminates,

17-2

the expected value gained by the algorithm is

T∑
t=1

N∑
i=1

pt(i)vt(i).

Algorithm 1: Multiplicative Weights

w1(i)← 1, ∀i = 1, . . . , N
for t← 1 to T do

Pick i with probability pt(i), get value vt(i)
wt+1(i)← (1 + εvt(i))wt(i), ∀i = 1, . . . , N

end

Theorem 1 Assume ε ≤ 1/2, then for any j,

T∑
t=1

N∑
i=1

pt(i)vt(i) ≥ (1− ε)
T∑
t=1

vt(j)−
1

ε
lnN.

Proof: The proof idea is to find both the upper and lower bound on WT+1. Note that

Wt+1 =
N∑
i=1

wt+1(i) =
N∑
i=1

wt(i)(1 + εvt(i))

= Wt + εWt

N∑
i=1

pt(i)vt(i)

= Wt

(
1 + ε

N∑
i=1

pt(i)vt(i)

)

≤Wt exp

(
ε
N∑
i=1

pt(i)vt(i)

)
.

Therefore,

WT+1 ≤W1 exp

(
ε

T∑
t=1

N∑
i=1

pt(i)vt(i)

)
= N exp

(
ε

T∑
t=1

N∑
i=1

pt(i)vt(i)

)
.

On the other hand, for any given j,

WT+1 ≥ wT+1(j) =
T∏
t=1

(1 + εvt(j)) ≥ (1 + ε)
∑T

t=1 vt(j),

using the result 1 + εx ≥ (1 + ε)x for x ∈ [0, 1].

17-3

Combining the above two inequalities, we get

(1 + ε)
∑T

t=1 vt(j) ≤ N exp

(
ε

T∑
t=1

N∑
i=1

pt(i)vt(i)

)
.

Taking the logarithm of each side,

ln(1 + ε)

T∑
t=1

vt(j) ≤ lnN + ε

T∑
t=1

N∑
i=1

pt(i)vt(i),

which implies

T∑
t=1

N∑
i=1

pt(i)vt(i) ≥
ln(1 + ε)

ε

T∑
t=1

vt(j)−
1

ε
lnN ≥ (1− ε)

T∑
t=1

vt(j)−
1

ε
lnN.

Here in the last step we are using the inequality ln(1 + x) ≥ x− x2 for x ≤ 1/2. �
For the case where each decision i is associated with a cost ct(i) ∈ [−1, 1] instead of

value vt(i), Algorithm 1 can be modified accordingly to guarantee the expected cost

T∑
t=1

N∑
i=1

pt(i)ct(i) ≤
T∑
t=1

(ct(j) + ε|ct(j)|) +
1

ε
lnN

for each j. For a good overview of multiplicative weights method, see the survey written
by Arora, Hazan and Kale.

3 Multiplicative Weights for Packing Problems

In this section, we apply the multiplicative weights method to find feasible solutions to the
system:

Ax ≤ e, x ∈ Q. (2)

Here A ∈ Rm×n, e ∈ Rm is the vector of all ones, and Q ⊆ Rn is a convex set. Assume
Ax ≥ 0 for each x ∈ Q.

We also assume that it is easy to optimize over Q, i.e., we have an oracle which can find
x ∈ Q such that pTAx ≤ pT e if such an x exists given any nonnegative vector p ∈ Rm. If
no such x ∈ Q exists, then we can conclude that the system (2) is infeasible. Since pTAx is
a linear function in x, we have an oracle as long as we can optimize linear functions over Q.

The goal is to find approximate solution x ∈ Q to (2) such that Ax ≤ (1 + ε)x, which
can be solved by Algorithm 2 based on the multiplicative weights method. For convenience,
define the width ρ of the oracle to be

ρ = max
i=1,...,m

max
x∈Q

returned
by oracle

(Ax)(i).

The idea in Algorithm 2 is to run multiplicative weights algorithm in which each decision
corresponds to a row of A and its value is (Axt)(i)/ρ, where xt is a vector returned by the
oracle.

17-4

Algorithm 2: Finding Feasible Solution to (2)

w1(i)← 1, ∀i = 1, . . . ,m
for t← 1 to T do

Wt ←
∑m

i=1wt(i), pt(i)← wt(i)/Wt

Run oracle to find xt ∈ Q such that pTt Axt ≤ pTt e
vt(i)← (Axt)(i)/ρ (observe the value is in [0, 1] by the definition of width ρ)
wt+1(i)← (1 + εvt(i))wt(i), ∀i = 1, . . . ,m

end

return x̄ =
∑T

t=1 xt/T

The running time is O(Tm) time plus O(T) oracle calls and additional matrix-vector
multiplications. The intuition in Algorithm 2 is to increase the weights most on the most
violated inequalities, so in later iterations the oracle will work harder to find xt satisfying
these constraints.

The returned value x̄ is always in Q by the convexity of Q. What remains to do is to
bound Ax̄. Observe that

m∑
i=1

pt(i)vt(i) =
1

ρ
pTt Axt ≤

1

ρ
pTt e =

1

ρ
.

By Theorem 1, for any j,

T

ρ
≥

T∑
t=1

N∑
i=1

pt(i)vt(i) ≥ (1− ε)
T∑
t=1

vt(j)−
1

ε
lnm

= (1− ε)
T∑
t=1

1

ρ
(Axt)(j)−

1

ε
lnm

= (1− ε)T
ρ

(Ax̄)(j)− 1

ε
lnm.

Hence

(1− ε)T
ρ

(Ax̄)(j) ≤ T

ρ
+

1

ε
lnm.

Set T = ρ lnm/ε2,

(Ax̄)(j) ≤ 1

1− ε

(
1 +

ρ lnm

εT

)
=

1 + ε

1− ε
≤ 1 + 4ε

for ε ≤ 1/3, which gives Ax̄ ≤ (1 + 4ε)e. The running time is

O
(mρ
ε2

lnm
)

+O
(ρ
ε2

lnm
)

oracle calls.

17-5

	Approximate Potentials from Approximate Flow
	The Multiplicative Weights Update Algorithm
	Multiplicative Weights for Packing Problems

