
ORIE 6334 Spectral Graph Theory October 13, 2016

Lecture 15
Lecturer: David P. Williamson Scribe: Shijin Rajakrishnan

1 Iterative Methods

We have seen in the previous lectures that given an electrical network, to obtain the
potentials for an electrical flow for a supply vector b, we need to solve the system
LGp = b, where LG is the Laplacian of the graph. Last time, we saw how to construct
a low-stretch tree. This lecture is an attempt to explain why low-stretch trees are
useful in solving this system.

One method we could use to solve this system is to use the pseudo-inverse, L†G,
and get p = L†Gb. However, computing the (pseudo) inverse can be a very slow
operation - just writing the inverse down takes O(n2) time. This is costly when the
input matrix is sparse and only has a few non-zero entries. We would ideally want an
algorithm for solving the system whose running time depends on the sparsity of the
matrix.

This motivates us towards exploring iterative methods for solving linear systems
of equations. To solve a linear system Ax = b, iterative algorithms only involve mul-
tiplication by the matrix A, and for a matrix A whose sparsity is m, this can be done
in time O(m). One disadvantage of such methods is that unlike other methods like
Gaussian elimination, this only returns an approximate solution, the gap becoming
smaller the longer the algorithm runs. However, they are quite fast and require a low
amount of space.

The basic idea behind iterative methods is that to solve a system of linear equa-
tions Ax = b, where A is symmetric and positive definite, we start with a vector x0,
perform the linear operation A on it (along with some vector additions) to get x1,
and iteratively keep performing these operations to get the sequence x0,x1, ...,xt and
we stop when xt is sufficiently close to the vector x∗ which satisfies Ax∗ = b. The
exact details will be outlined below, but we can see that the only expensive operation
is multiplying by the matrix A, which is fast if A is sparse.

Before we dive into the algorithm, we note that if Ax∗ = b, then for any scalar α,
we have αAx∗ = αb, rearranging which gives us

x∗ = (I − αA)x∗ + αb.

0This lecture is derived from Spielman’s Lecture 12, http://www.cs.yale.edu/homes/

spielman/561/lect12-15.pdf; and Spielman and Woo 2009 https://arxiv.org/pdf/0903.

2816v1.pdf.

15-1

http://www.cs.yale.edu/homes/spielman/561/lect12-15.pdf
http://www.cs.yale.edu/homes/spielman/561/lect12-15.pdf
https://arxiv.org/pdf/0903.2816v1.pdf
https://arxiv.org/pdf/0903.2816v1.pdf

This tells us that x∗ is the fixed point of the affine transformation indicated by
the equation, and naturally leads to an iterative algorithm, called the Richardson
Iteration.

Algorithm 1: Richardson Iteration

x0 ← 0
for t← 1 to k do

xt ← (I − αA)xt−1 + αb

We now analyze the above algorithm and prove that this converges to a vector
close to the solution vector x∗. We will see that the convergence of this algorithm
depends on the spectral norm, ‖I − αA‖, which is the maximum absolute value of
the eigenvalues of I − αA.

Suppose that λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of the matrix I − αA. Then
the eigenvalues of I − αA are 1− αλ1 ≥ 1− αλ2 ≥ · · · ≥ 1− αλn, and thus

‖I − αA‖ = max
i
|1− αλi| = max (|1− αλ1|, |1− αλn|)

This is minimized when we take α = 2
λ1+λn

, yielding ‖I − αA‖ = 1− 2λ1
λ1+λn

.
Now we turn to the analysis of the convergence of the Richardson Iteration.

x∗ − xt = [(I − αA)x∗ + αb]−
[
(I − αA)xt−1 + αb

]
= (I − αA)(x∗ − xt−1)

= (I − αA)2(x∗ − xt−2)

= (I − αA)t(x∗ − x0)

= (I − αA)tx∗.

We define xt to be close to the x∗ when the norm of their difference is a small
fraction of the norm of x∗. Then

‖x∗ − xt‖ = ‖(I − αA)tx∗‖
≤ ‖(I − αA)t‖ (‖x∗‖)

=

(
1− 2λ1

λ1 + λn

)t
‖x∗‖

≤ exp

(
−2λ1

λ1 + λn

)
‖x∗‖,

where the final step used the fact that 1− x ≤ e−x. To make this difference ε-small,
we set

t =
λ1 + λn

2λ1

ln

(
1

ε

)
=

(
λn
2λ1

+
1

2

)
ln

(
1

ε

)
,

15-2

so that we obtain
‖x∗ − xt‖ ≤ ε‖x∗‖.

We can see that the speed of convergence, i.e the number of iterations required to
get close to the solution to Ax = b, depends on the ratio of the largest and smallest
eigenvalues, λn

λ1
, and that the larger it is, the longer it takes for the algorithm to

converge to the approximate solution.

Definition 1 For a symmetric, positive definite matrix A with eigenvalues λ1 ≤ λ2 ≤
... ≤ λn, its condition number is defined as

κ(A) =
λn
λ1

This algorithm was just one of the examples of an iterative methods to find an
approximate solution to a linear system. There are other, faster methods (such as
the Chebyshev method and Conjugate Gradient) that find an ε-approximate solution
in O(

√
κ(A) ln

(
1
ε

)
) iterations.

2 Preconditioning

In any case, we can see that if we modify the initial problem so that the condition
number decreases, then the algorithms will run faster. Of course, since we change
the problem, we need to worry about the implications on how far the new solution is
from the old, and how the algorithm changes by changing the initial matrix.

One such idea is precondition the matrix. For a matrix B � 0 (B � 0) that
is symmetric and has the same nullspace as A, instead of solving Ax = b, solve
B†Ax = B†b. Now we apply the iterative methods to the matrix B†A. This provides
an improvement because we will prove that for a careful choice of B, we can reduce
the condition number of the new matrix, and thus approximate the solution faster.

For solving LGp = b, we precondition by L†H , where H is a subgraph of G. In
particular, we precondition by L†T where T is a spanning tree of G. This idea is at-
tributed to Vaidya ([1]). Now the relevant condition number is λn(L†TLG)/λ2(L†TLG):
We know that the smallest eigenvalue is zero, and thus look at the smallest positive
eigenvalue for the condition number, which assuming the graph is connected is λ2.

Definition 2 A � B iff B − A � 0

Claim 1 LT � LG, where T is a spanning tree of G.

Proof: ∀x, xTLTx =
∑

(i,j)∈T (x(i)− x(j))2 ≤
∑

(i,j)∈E(x(i)− x(j))2 = xTLGx

and thus xT (LG − LT)x � 0 ⇐⇒ LG − LT � 0 ⇐⇒ LT � LG. 2
Note that this proof also holds for any subgraph of G, not just a spanning tree.

15-3

Claim 2 L†TLG has the same spectrum as L
†/2
T LGL

†/2
T , where L

†/2
T =

∑
i:λi 6=0

1√
λi

xixi
T

and λi,xi are corresponding eigenvalues and eigenvectors of LT .

Proof: Consider an eigenvector x of L†TLG of eigenvalue λ such that 〈x, e〉 =

0. Then since L†TLGx = λx, on setting x = L
†/2
T y, we get L†TLGL

†/2
T y = λL

†/2
T y.

Premultiplying both sides by L
1/2
G =

∑
i:λi 6=0

√
λixixi

T , we obtain L
†/2
T LGL

†/2
T y = λy,

implying that λ is an eigenvalue of L
†/2
T LGL

†/2
T as well. 2

Using these results, we can prove a bound on the smallest positive eigenvalue of
L†TLG.

Lemma 3
λ2(L†TLG) ≥ 1.

Proof:

λ2(L†TLG) = λ2(L
†/2
T LGL

†/2
T)

= min
x:〈x,e〉=0

xTL
†/2
T LGL

†/2
T

xTx

= min
y=L

†/2
T x

〈x,e〉=0

yTLGy

yTLTy

≥ 1,

where the final step used the fact that LT � LG. 2
So we have bounded the denominator of the condition number of L†TLG, and we

now turn to upper-bounding the numerator.
Suppose that G is a weighted graph, with weights 1

w(i,j)
≥ 0, for each edge (i, j) ∈

E. The above proof for bounding λ2(L†TLG) can be used to prove the same even for
the weighted case. From the last lecture, recall that for a spanning tree T of G, and
an edge e = (k, l) ∈ E, the stretch of e is defined as

stT (e) =

∑
(i,j) on k-l path

w(i, j)

w(k, l)

and that the total stretch of the graph is

stT (G) =
∑
e∈E

stT (e)

Lemma 4 (Spielman, Woo ’09) tr(L†TLG) = stT (G)

15-4

From this lemma, we can arrive at the required bound on the largest eigenvalue,
λn(L†TLG) ≤ stT (G).
Proof of Lemma 4:

tr(L†TLG) = tr

L†T ∑
(k,l)∈E

1

w(k, l)
(ek − el)(ek − el)T


=
∑

(k,l)∈E

1

w(k, l)
tr
(
L†T (ek − el)(ek − el)T

)
(a)
=

∑
(k,l)∈E

1

w(k, l)
tr
(

(ek − el)TL†T (ek − el)
)

=
∑

(k,l)∈E

1

w(k, l)
reff(k, l)

=
∑

(k,l)∈E

1

w(k, l)

∑
(i,j) in

k-l path in T

w(i, j)

= stT (G),

where (a) used the cyclic property of the trace; that is, the trace is invariant under
cyclic permutations, and thus tr(ABC) = tr(BCA) = tr(CAB), and reff(k, l) is the
effective resistance in the tree T for sending one unit of current from k to l, with
conductances 1

w(i,k)
. 2

Thus, from the previous two lemmas, we can see that the condition number
of L†TLG is at most stT (G), and thus the linear system L†TLGp = L†Tb can be ε-
approximately solved for p in O(

√
stT (G) ln 1

ε
) iterations.

But now each iteration consists of multiplying by the matrix L†TLG, and initially,
we need to compute L†Tb as well. Thus we can see that we need to be able to compute
the product of a vector with L†T in an efficient way. Suppose that we have to compute
z = L†Ty, equivalently, solve LTz = y, then it turns out that since T is not just any
subgraph but rather a spanning tree, this computation can be done in time O(n).

To see this, we write down the equations in the system LTz = y:

dT (i)z(i)−
∑

j:{i,j}∈T

z(j) = y(i) ∀i ∈ V.

Suppose that i is a leaf in T , with an incident edge (i, j). Then the relevant equation
for this node is z(i) − z(j) = y(i), i.e, z(i) = z(j) + y(i). Note that since i is a leaf,
the only equation in which the variable z(i) appears is this one and the equation for
z(j). Thus we can substitute for z(i) with z(j) + y(i) and recurse on the smaller tree
excluding the vertex i. This recursion will continue until we end up with a single edge
(k, l). In this case, we set z(k) = 0, and back substitute to find the values of z for all

15-5

the other vertices. It can be seen that this process takes O(n) time, as in each step
of the recursion, we do constant work and there are n− 1 recursive steps.

Thus we can compute the matrix product with L†TLG in time O(m), and recalling
that for a graph G, we can find a low stretch spanning tree of stretch stT (G) =
O(m log n log log n) in time O(m log n log log n), we can see that given the system

LGp = b, in O(m log n log log n+m
√

stT (G) ln 1
ε
) = Õ(m

3
2 ln 1

ε
) time, we can find an

ε-approximate solution.
Remember that in finding an upper bound for the largest eigenvector of L†TLG, we

bounded it by its trace. Spielman and Woo improved upon this running time bound
by using the following result.

Theorem 5 (Axelsson, Lindskog ’86; as cited in Spielman, Woo ’09) For ma-
trices A,B � 0 with the same nullspace, let all but q eigenvalues of B†A lie in the
interval [l, u], with the remaining eigenvalues larger than u. Then for a vector b
in the rangespace of A, using the preconditioned conjugate gradient algorithm, an ε-
approximate solution such that ‖x−A†b‖A ≤ ε‖A†b‖A can be found in q+d1

2
ln 2

ε

√
u
l
e

iterations, where ‖x‖A =
√

xTAx.

We can use this theorem and since we have a bound on the trace, we can bound
the number of large eigenvalues: Set l = 1, u = (stT (G))

2
3 , then we can have at

most q = u = (stT (G))
1
3 eigenvalues of value more than u. Now

√
u
l

= q, and thus
we get that the number of iteration required to solve the system approximately is
O((stT (G))

1
3 ln 1

ε
) = Õ(m

4
3 ln 1

ε
).

References

[1] Pravin M. Vaidya. Solving linear equations with symmetric diagonally dominant
matrices by constructing good preconditioners. Unpublished manuscript UIUC
1990. A talk based on the manuscript was presented at the IMA Workshop
on Graph Theory and Sparse Matrix Computation, October 1991, Minneapolis.,
1990.

15-6

	Iterative Methods
	Preconditioning

