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1 Definitions

Consider an undirected graph G = (V,E) such that each edge (i, j) has resistance r(i, j)
(or conductance c(i, j) = 1/r(i, j)). A current flow f(i, j) is one that obeys both

• Kirchoff’s current law (KCL) ()i.e. flow conservation)

flow into node i = flow leaving node i

• Ohm’s Law: there exist potentials p(i), for all i ∈ V , such that

f(i, j) =
p(i)− p(j)
r(i, j)

= c(i, j)(p(i)− p(j)).

Then notice that if Ohm’s Law is obeyed, then it must be the case that

f(j, i) =
p(j)− p(i)
r(i, j)

= −p(i)− p(j)
r(i, j)

= −f(i, j),

so the flow from j to i is the negative of the flow from i to j. We call this condition
skew symmetry.

Since G is undirected, we’ll try use (i, j) when we want direction (e.g. f(i, j) indicates the
flow from i to j), and use {i, j} when we don’t (e.g. summing over {i, j} ∈ E). Notice
there are also some exceptions, say, resistance r(i, j), which is inherently undirected, and we
assume this is clear from the context. It will also be useful to assume each edge is oriented
arbitrary; we denote this set of edges as ~E.

There is another law called Kirchoff’s potential/voltage law (KPL or KVL), which states
that ∑

(i,j)∈C

f(i, j)r(i, j) = 0, for any directed cycle C.

We prove that KPL is equivalent to Ohm’s Law. It is occasionally useful for us to assume
that the current flow is defined by KCL and KPL rather than KCL and Ohm’s Law.

Theorem 1 KPL is equivalent to Ohm’s Law.

Proof: If there exists potentials satisfying Ohm’s Law, then for any directed cycle C,∑
(i,j)∈C

f(i, j)r(i, j) =
∑

(i,j)∈C

(p(i)− p(j)) = 0.
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For the other direction, pick some spanning tree T with root r. Let Pi be the directed path
in T from i to r. Then we can create the tree-defined potentials:

p(i) =
∑

(k,l)∈Pi

f(k, l)r(k, l), ∀i ∈ V.

Notice that these are exactly the potentials we get by assuming that Ohm’s Law is obeyed
for each edge {i, j} ∈ T , so that Ohm’s Law obeyed for all {i, j} ∈ T .

For any edge (i, j) ∈ E − T , let PRj be the r-i path in T (the superscript R denotes the

reverse). Then let C be the directed cycle formed by the directed path Pi, the PRj , and the
arc (j, i). Then we have that

p(i)− p(j) =
∑

(k,l)∈Pi

f(k, l)r(k, l)−
∑

(k,l)∈Pj

f(i, l)r(k, l)

=
∑

(k,l)∈Pi∪PR
j

f(k, l)r(k, l)

=
∑

(k,l)∈C

f(k, l)r(k, l)− f(j, i)r(j, i)

= 0− f(j, i)r(j, i) = f(i, j)r(i, j),

where the last equality holds by skew symmetry. 2

Notice that it is very easy to find a current flow and potentials obeying KCL and Ohm’s
Law: f = 0 and p = 0. To make things more interesting, we start to think about supplying
and demanding current from the circuit. Let b(i) be current supplied to i, where b(i) > 0
if it is a supply, and b(i) < 0 if it is a demand. Then

b(i) =
∑

j:{i,j}∈E

f(i, j), by KCL

=
∑

j:{i,j}∈E

c(i, j)(p(i)− p(j)), by Ohm’s Law.

If b(s) = 1, b(t) = −1 for some s, t ∈ V , we say f is an s-t electrical flow. An example is
shown in Figure 1.

This is all very interesting, but what does it have to do with spectral graph theory?
Suppose for a given b that we want to find the corresponding potentials p for the resulting
electrical flow. Consider the weighted Laplacian with conductances as weights, i.e.

LG =
∑
{i,j}∈E

c(i, j)(ei − ej)(ei − ej)T .

We claim that the potentials we want actually satisfies LGp = b.

Claim 2 LGp = b.
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Figure 1: Example of a flow in an electrical network. We put in one unit of current (in
amps) at s and remove one at t. The nodes show the potentials (in volts), and each edge
has the current passing through it, followed by its resistance.

Proof: Note that

LGp =
∑
{i,j}∈E

c(i, j)(ei − ej)(ei − ej)T p

=
∑
{i,j}∈E

c(i, j)(ei − ej)(pi − pj),

so that by flow conservation

b(i) =
∑

j:{i,j}∈E

f(i, j) =
∑

j:{i,j}∈E

c(i, j)(p(i)− p(j)) = LGp(i).

Hence, it follows that LGp = b. 2

Thus we get the potentials p by solving LGp = b for p. However, notice that LG is
singular (its smallest eigenvalue λ1 = 0), and we cannot use L−1

G directly. But we can use
pseudoinverse instead. Recall

L†G =
∑
i:λi 6=0

1

λi
xix

T
i ,

where 0 = λ1 ≤ λ2 ≤ ... ≤ λn are the eigenvalues and x1 = e√
n
, ..., xn are associated

orthonormal eigenvectors.

Claim 3 p = L†Gb.

Proof: In order for there to be a solution for p, we need bT e = 0 (we assume G is
connected ⇒ λ2 > 0); that is b is orthogonal to the nullspace of LG. And this is a natural
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physical condition: it says that the the amount of current supplied must be equal to the
amount of current demanded, and there is overall conservation of current.

Notice that x1, ..., xn forms a basis, and we can write b =
∑n

2 αixi, since bTx1 = 0. Then

LGp = LGL
†
Gb

=

(
n∑
i=2

λixix
T
i

)(
n∑
i=2

1

λi
xix

T
i

)
b

=

(
n∑
i=2

xix
T
i

)(
n∑
i=2

αixi

)
=

n∑
i=2

αixi = b.

2

One observation that will be useful for us later on is that tr(LGL
+
G) = n − 1. This is

because

(LGL
†
G)xi =

(
n∑
i=2

xix
T
i

)
xi =

{
xi i = 2, ..., n,
0 i = 1,

and thus the spectrum of LGL
†
G is 0, 1, ..., 1. Therefore, tr(LGL

†
G) =

∑n
i=1 λi = n− 1.

The main reason this topic is of interest to us (and the main reason we have this course)
is the following theorem shown by Spielman and Teng about a decade ago.

Theorem 4 (Spielman and Teng, 2004) LGp = b can be solved for p (approximately)
in Õ(m) time.

The significance of the paper is that we can solve this linear system in time nearly linear in
the number of edges of the graph (i.e. essentially the number of nonzeroes of the Laplacian);
this is useful since in many cases graphs really are sparse. There has since been a significant
amount of followup work improving this result (including a simple solver we will see in about
two weeks) and finding various applications of it (which we will also see).

Before we move on to two more concepts we will later need, we note that sometimes
it helps to write f(i, j) for (i, j) ∈ ~E in matrix notation. Let C ∈ Rm×m matrix with
conductance c(i, j) in diagonal, B ∈ Rm×n with row (i, j) ∈ ~E equal to (ei − ej)T , then

f = CBp,

LG =
∑
{i,j}∈E

c(i, j)(ei − ej)(ei − ej)T = BTCB,

b = LGp = BTCBp = BT f.

2 Effective Resistance and Energy

We now introduce the definitions for effective resistance and energy.

• The effective resistance reff(i, j) between i and j is the potential drop between i and j
induced by an i-j electrical flow. Essentially this quantity is the resistance between i
and j if we replace the entire network by a single resistor. Since the potentials induced
by an i-j electrical flow is the p such that LGp = ei−ej , we have that p = L†G(ei−ej),

reff(i, j) = p(i)− p(j) = (ei − ej)T p = (ei − ej)TL+
G(ei − ej).
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• Given current f , the energy dissipated by a resistance r is f2r. Thus, the energy E(f)
dissipated by our electrical network G with current flow f is

E(f) =
∑
{i,j}∈E

f2(i, j)r(i, j) =
∑
{i,j}∈E

(p(i)− p(j))2

r(i, j)

=
∑
{i,j}∈E

c(i, j)(p(i)− p(j))2 = pTLGp, for associated potentials p.

For an s-t electrical flow, b = es−et. If p is the associated potential with LGp = es−et,
we have that

E(f) = pTLGp = pT (es − et) = p(s)− p(t) = reff(s, t).

We end by showing flows, potentials and energy are actually closely related with each
other.

Lemma 5 The electrical flow f is the unique minimizer of energy E(f) of system among
all flows g satisfying KCL for b, i.e. flows g such that BT g = b.

Proof: Set h = f − g, then for any i ∈ V ,∑
j:{i,j}∈E

h(i, j) =
∑

j:{i,j}∈E

f(i, j)−
∑

j:{i,j}∈E

g(i, j) = 0.

by flow conservation (KCL). Then

E(g) =
∑

(i,j)∈ ~E

g2(i, j)r(i, j)

=
∑

(i,j)∈ ~E

(f(i, j) + h(i, j))2r(i, j)

=
∑

(i,j)∈ ~E

f(i, j)2r(i, j) + 2
∑

(i,j)∈ ~E

f(i, j)h(i, j)r(i, j) +
∑

(i,j)∈ ~E

h(i, j)2r(i, j)

= E(f) + 0 +
∑

(i,j)∈ ~E

h(i, j)2r(i, j) > E(f), if h 6= 0,

where the fourth equality holds since∑
(i,j)∈ ~E

f(i, j)h(i, j)r(i, j) =
∑

(i,j)∈ ~E

(p(i)− p(j))h(i, j) =
∑
i∈V

p(i)
∑

j:{i,j}∈E

h(i, j) = 0,

by using the skew-symmetry of h. Therefore, we concludes that f is the unique minimizer
of E(f). 2

Lemma 6 For a given b such that bT e = 0, the potentials p for electrical flow f determined
by b maximize 2xT b− xTLGx over all x ∈ Rn.
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Proof: Use calculus by setting ∇(2xT b − xTLGx) = 2(b − LGx) = 0, i.e. LGx = b.
Thus, it directly follows that the potential p is the maximizer. 2

Notice that by substituting x with optimal solution p,

2pT b− pTLGp = 2pTLGp− pTLGp = pTLGp = E(f).

In fact, the above two lemmas can be viewed as dual to each other, i.e. the primal and
dual problems share the same optimal value, with flows and potential as their corresponding
minimizer and maximizer respectively. We will be using this duality in the simple solver
for LGp = b we will be seeing shortly.
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