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Lecture 11
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In today’s lecture we will focus on discrete time random walks on undirected
graphs. Specifically, we will study random walks on an undirected graph G = (V,E),
where the time proceeds in unit steps: t = 1, 2, . . .. At each time t, the walk is at
some node i ∈ V , and at time t+1, the walk will choose one of i’s neighbors uniformly
at random and move to that neighbor. We will also study another kind of transition
where at each time, the walk will stay at the current node i with probabilty 1/2 and
move to a neighbor of i uniformly at random with probability 1/2. A random walk
with such transition probability is called the lazy random walk.

Here is a simple example of a random walk on an undirected graph. The number
besides each node is the probability the walk is at that node at each time t.
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Figure 1: A simple example of a random walk

We are interested in understanding some long term behavior of the walk. For
example, under some conditions, a random walk will converge to a probability distri-
bution which is called the stationary distribution. In this lecture, we will use spectral
theory to come up with answers to the following questions: what is the stationary
distribution? Under what condition will the walk converge? How long does it take to
converge? The time the walk takes to converge is called the mixing time of the walk.

We will first formally define the random walk. Let pt be the probability distribu-
tion of the position of the walk at time t (that is, pt(i) is the probability the walk is at
node i at time t). Then given the distribution pt of the walk at time t, the probability
the walk is at a node i ∈ V at time t+ 1 is

pt+1(i) =
∑

j:(i,j)∈E

pt(j)
1

d(j)
,

0This lecture is derived from Lap Chi Lau’s lecture notes of Lecture 7 of CS798: Algorithmic
Spectral Graph Theory, Fall 2015 at University of Waterloo, https://cs.uwaterloo.ca/~lapchi/
cs798/notes/L07.pdf.
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where d(j) is the degree of node j.
Let A be the adjacency matrix of G, and let

D =


d(1)

...
0

0 ...
d(n)

 .

Then the above transition relation can be written in matrix form as

pt+1 = AD−1pt = (AD−1)t+1p0,

where p0 is the initial distribution of the location of the walk.
We define the stationary distribution as follows.

Definition 1 A probability distribution π over the set of nodes V of a graph G =
(V,E) is a stationary distribution of the random walk if π = (AD−1)π.

Observe that π = d
2m

where d = (d(1), d(2), . . . , d(n)) is a stationary distribution
since

AD−1
d

2m
= A

e

2m
=

d

2m
.

Here e is the vector of all 1’s. Note that this implies the stationary distribution is
the eigenvector of AD−1 corresponding to the eigenvalue 1.

One question we are interested in is whether the walk will converge to the sta-
tionary distribution in the long run. We say such walks are ergodic.

Definition 2 A random walk is ergodic if there exists a distribution π such that for
all initial distributions p0, limt→∞ pt = π.

Under what conditions is the walk ergodic? The main theorem we will prove today
is the following.

Theorem 1 A random walk on a graph G is ergodic if and only if G is connected
and not bipartite.

The necessity is straightforward. G must be connected since otherwise two initial
distributions which have all mass in two different components respectively will not
converge to the same limiting distribution. To see why G cannot be bipartite, let L,
R be the bipartition. If the walk starts in L at t = 0, then it will always be in L in
even steps and in R in odd steps, and the limiting distribution does not exist.

The above analysis is for random walks which always moves to a neighbor at each
time. For the lazy random walk, we have that

pt+1(i) =
1

2
pt(i) +

1

2

∑
j:(i,j)∈E

pt(j)
1

d(j)
.
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Written in matrix form this becomes

pt+1 = (
1

2
I +

1

2
AD−1)pt.

We write W ≡ 1
2
I + 1

2
AD−1, so that pt+1 = W t+1p0. It is easy to see π = d

2m
is also

a stationary distribution for the lazy random walk.
For lazy random walks to be ergodic, the requirement for G not being bipartite

is no longer necessary since at each time with probability 1/2 the walk will stay in
the same part instead of jumping between the two parts alternatively. It is clear that
connectivity is still needed. So the theorem we will show is as follows.

Theorem 2 A lazy random walk on a graph G is ergodic if and only if G is connected.

We first prove the two theorems on regular graphs (a d-regular graph is a graph
such that the degree of all nodes is d), then explain how to extend the result to general
non-regular graphs.

For a d-regular graph, AD−1 = 1
d
A = A , where A is the normalized adjacency

matrix of G (and for the lazy random walk we have W = 1
2
I + 1

2
A ). The stationary

distribution is

π =
d · e
2m

=
d · e
nd

=
e

n
,

so that each node is equally likely.
Proof of Theorem 1 and Theorem 2 for d-regular graphs: Let α1 ≥ α2 ≥
· · · ≥ αn be the eigenvalues of A and x1, x2, . . . , xn be corresponding orthonormal
eigenvectors. Recall from Lectures 7 and 8 we have the following results:

• α1 = 1, x1 = e√
n
.

• If G is connected, α2 < 1.

• αn ≥ 1. Moreover, G is not bipartite if and only if αn > −1.

Since xi’s form an orthonormal basis of Rn, for any initial distribution p0 we can
write p0 as p0 = c1x1 + · · ·+ cnxn where ci = 〈xi, p0〉 for i = 1, 2, . . . , n. Thus,

pt = (AD−1)tp0 = A tp0 = A t

(
n∑
i=1

cixi

)
=

n∑
i=1

ciα
t
ixi.

Note that only the sufficiency of the condition needs to be shown. Assume G is
connected and non-bipartite (for an ordinary random walk). Then from above we
have α2 < 1 and αn > −1. Therefore |αi| < 1 hence αti → 0 as t → ∞ for all
i = 2, . . . , n and

lim
t→∞

A tP0 = lim
t→∞

n∑
i=1

ciα
t
ixi =

n∑
i=1

lim
t→∞

ciα
t
ixi = c1α1x1.
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Since α1 = 1 and x1 = e√
n
, we have

c1 = 〈p0, x1〉 =
1√
n

n∑
i=1

p0(i) =
1√
n
,

since p0 is a probability distribution on the nodes. Hence c1α1x1 = 1√
n
· 1 · e√

n
= e

n
,

as desired for ordinary random walks.
For the lazy random walk, the proof is similar. Let w1 ≥ w2 ≥ · · ·wn be eigen-

values of W = 1
2
I + 1

2
A . Then we have wi = 1

2
+ 1

2
αi. If G is connected, then

1 = α1 > α2 ≥ · · · ≥ αn ≥ −1, so w1 = 1 and 0 ≤ wn ≤ wn−1 ≤ · · · ≤ w2 < 1. Also
W has the same eigenvectors as A so using the same argument for ordinary random
walks we have limt→∞W

tp0 = e
n
. 2

Next we look at how long the walk will converge to the stationary distribution on
a d-regular graph, i.e., the mixing time. We first define the meaning of “convergence”
we will be using here.

Definition 3 For probability distributions p and q on V , the total variation distance
between p and q is defined as

d(p, q) ≡
n∑
i=1

|p(i)− q(i)| = ‖p− q‖1.

Definition 4 The (total variation) mixing time is the smallest t such that d(pt, π) ≤
1
4
.

What is the mixing time for a d-regular graph? As before, assume the graph G is
connected and non-bipartite so α2 < 1 and αn > −1. Let α ≡ min(1 − α2, 1 − |αn|)
be the spectral gap of A . Since

pt = A tp0 =
n∑
i=1

c1αixi =
e

n
+

n∑
i=2

ciαixi,

Then we have that

d(Pt, π) = d(A tp0,
e

n
)

=
∥∥∥A tp0 −

e

n

∥∥∥
1

=

∥∥∥∥∥
n∑
i=2

ciα
t
ixi

∥∥∥∥∥
1

≤
√
n

∥∥∥∥∥
n∑
i=2

ciα
t
ixi

∥∥∥∥∥
2

,
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where the last inequality is from the Cauchy-Schwartz inequality. Note that∥∥∥∥∥
n∑
i=2

ciα
t
ixi

∥∥∥∥∥
2

2

= (c2α
t
2x2 + · · ·+ cnα

t
nxn)T (c2α

t
2x2 + · · ·+ cnα

t
nxn)

=
n∑
i=2

c2iα
2t
i ,

and from the definition of the spectral gap α we have

n∑
i=2

c2iα
2t
i ≤ (1− α)2t

n∑
i=2

c2i

≤ (1− α)2t
n∑
i=1

c2i

≤ (1− α)2t,

where the last inequality comes from

1 ≥ ‖p0‖22 = (c1x1 + · · ·+ cnxn)T (c1x1 + · · ·+ cnxn) =
n∑
i=1

c2i .

Therefore

d(A tp0, π) ≤
√
n(1− α)t.

If we choose t ≥ lnn
α

, and use the fact that 1− x ≤ e−x for all x, we have

d(A tp0, π) ≤
√
ne−αt ≤

√
n · 1

n
=

1√
n
≤ 1

4
,

for n sufficiently large. Therefore the mixing time for random walks is O( lnn
α

).
For the lazy random walk, we can say more about the mixing time. The spectral

gap for lazy walks is 1 − w2 = 1 − (1
2

+ 1
2
α2) = 1

2
− 1

2
α2. Hence the mixing time is

lnn/(1
2
− 1

2
α2).

Recall the normalized Laplacian matrix L is defined as L = I − A . Let λ1 ≤
· · · ≤ λn be the eigenvalues of L and by definition λi = 1 − αi for all i = 1, . . . , n.
Thus, α2 = 1 − λ2 and the mixing time for lazy walks is lnn/(1

2
λ2). By Cheeger’s

inequality, λ2 ≥ φ2(G)
2

, so the mixing time is at most O( lnn
φ2(G)

).
Finally, we will now extend the above results to non-regular graphs. For a non-

regular graph G, AD−1 6= D−1/2AD−1/2 = A , and W 6= 1
2
I + 1

2
A for lazy walks.

However, AD−1 is similar to A and W is similar to 1
2
I + 1

2
A . Recall a matrix

X is similar to another matrix Y if there exists a non-singular matrix B such that
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X = BY B−1. If X and Y are similar, they will have the same spectrum since their
characteristic polynomials are the same, shown as follows:

det(λI −X) = det(λI −BY B−1) = det(B(λI − Y )B−1) = det(λI − Y ).

Since D−1/2(AD−1)D1/2 = D−1/2AD−1/2 = A , AD−1 is similar to A , and W =
1
2
I + 1

2
AD−1 is similar to 1

2
I + 1

2
A because D−1/2(1

2
I + 1

2
AD−1)D1/2 = 1

2
I + 1

2
A .

Therefore, the spectrum for AD−1 is still α1, . . . , αn and if G is connected and
non-bipartite, we still have 1 = α1 > α2 ≥ · · · ≥ αn > −1. Simialrly, the spectrum of
W is still 1

2
+ 1

2
αi for i = 1, . . . , n and if G is connected then 1 = 1

2
+ 1

2
α1 >

1
2

+ 1
2
α2 ≥

· · · ≥ 1
2

+ 1
2
αn ≥ 0.

Also, D1/2xi, i = 1, . . . , n are eigenvectors of AD−1. To see this, note that
D−1/2(AD−1D1/2xi) = (D−1/2AD−1/2)xi = A xi = αixi implies AD−1(D1/2xi) =
αi(D

1/2xi). Since D1/2 is full rank so D1/2x1, . . . , D
1/2xn form a basis and we can

write any intial distribution p0 =
∑n

i=1 ciD
1/2xi, and the remaining proof just follows

the argument for regular graphs.
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