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Lecture 10
Lecturer: David P. Williamson Scribe: Julian Sun

Recall that if we can find a vector x such that < x, e >= 0 and such that xTL x ≤
(λ2 + ε)xTx, then we showed in Trevisan’s algorithm that we can find S ⊂ V such
that such that the conductance φ(S) ≤

√
2(λ2 + ε). In this lecture we will give an

algorithm that finds such a vector.

1 Eigenvector of the Largest Eigenvalue

We begin by finding the eigenvector corresponding to the largest eigenvalue of a
symmetric positive semidefinite matrix A.

Let x1, . . . ,xn be orthonormal eigenvectors, with λ1 ≥ · · · ≥ λn being the corre-
sponding eigenvalues of A. Consider the following algorithm.

Algorithm 1: Power Method

Pick v0 by drawing v0(i) ∼ N(0, 1) for all i
for j ← 1 to k do

vj ← Avj−1
return vk

If A ∈ Rn×n has m nonzero entries, then this algorithm runs in O(k(m+n)) time.
Let us introduce a preliminary lemma regarding the vector v0.

Lemma 1 Let x be a vector such that ‖x‖ = 1. Then for v such that v(i) ∼ N(0, 1)
for all i,

Pr

[
|xTv| ≥ 1

2

]
≥ 2Φ

(
−1

2

)
≥ 0.6,

where N(0, 1) is the standard normal distribution, and Φ is the cdf of the standard
normal. Also

Pr
[
‖v‖2 ≤ 2n

]
≥ 1− e−n/6.

With that in mind, we can show that the vector we have constructed in Power
Method has Rayleigh ratio reasonably close to that of the eigenvector of the largest
eigenvalue.

0This lecture is derived from Trevisan Chapter 4, https://people.eecs.berkeley.edu/~luca/
books/expanders.pdf and Vishnoi, Chapter 8, http://research.microsoft.com/en-us/um/

people/nvishno/site/Lxb-Web.pdf.
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Lemma 2 Let v be such that v(i) ∼ N(0, 1) for all i, |vTx1| ≥ 1
2
, A � 0. Then for

k > 0, ε > 0, y = Akv,

yTAy

yTy
≥ λ1(1− ε)

1

1 + 4‖v‖2(1− ε)2k
.

If we can show that the lemma is true, then for k = O( logn
ε

), ‖v‖2 ≤ 2n, we have

yTAy

yTy
≥ λ1(1− ε)

1

1 + 8n(1− ε)2k
≥ λ1(1− ε)

1

1 + 8
n

≥ λ1(1− 2ε)

for n sufficiently large.
Proof: Let v = α1x1 + · · ·+ αnxn, where αi = 〈v,xi〉. Note that this implies

‖v‖2 = vTv = (α1x1 + · · ·αnxn)T (α1x1 + · · ·αnxn) =
n∑
i=1

α2
i .

We assumed that |α1| ≥ 1
2
. Recall that the eigenvectors of Ak are still x1, . . . ,xn,

with eigenvalues being λk1, . . . , λ
k
n. Since A � 0, it follows that λ1, . . . , λn ≥ 0. Hence

λk1 ≥ · · · ≥ λkn ≥ 0. So

y = Akv = Ak(α1x1 + · · ·+ αnxn) = α1λ
k
1x1 + · · ·+ αnλ

k
nxn,

and hence
yTAy = α2

1λ
2k+1
1 + · · ·+ α2

nλ
2k+1
n .

Similarly,
yTy = α2

1λ
2k
1 + · · ·+ α2

nλ
2k
n .

Let l be the largest index such that λl ≥ (1− ε)λ1. Then

yTAy ≥
l∑

i=1

α2
iλ

2k+1
i ≥ (1− ε)λ1

l∑
i=1

α2
iλ

2k
i .

We can also write

yTy =
l∑

i=1

α2
iλ

2k
i +

n∑
i=l+1

α2
iλ

2k
i ,

where by definition of l and by the fact that |α1| ≥ 1
2
,

n∑
i=l+1

α2
iλ

2k
i ≤ λ2k1 (1− ε)2k

n∑
i=l+1

α2
i

≤ λ2k1 (1− ε)2k‖v‖2

≤ 4α2
1λ

2k
1 (1− ε)2k‖v‖2

≤ 4(1− ε)2k‖v‖2
l∑

i=1

α2
iλ

2k
i .
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Hence it follows that

yTy ≤ (1 + 4(1− ε)2k‖v‖2)
l∑

i=1

α2
iλ

2k
i ,

and therefore

yTAy

yTy
≥ (1− ε)λ1

∑l
i=1 α

2
iλ

2k
i

(1 + 4(1− ε)2k‖v‖2)
∑l

i=1 α
2
iλ

2k
i

= λ1(1− ε)
1

1 + 4‖v‖2(1− ε)2k
,

as desired. 2

2 Eigenvector of the Second Largest Eigenvalue

Observe that if x1 the eigenvector associated with the largest eigenvalue of the matrix
A, then recall that

λ2 = max
x:〈x,x1〉=0

xTAx

xTx
.

So if we want to find a vector with Rayleigh ratio close to that of x2, we can just
make sure that the vector x satisfies the condition 〈x,x1〉 = 0 and apply the Power
Method.

Algorithm 2: Power2

Pick v by drawing v(i) ∼ N(0, 1) for all i
v0 ← v − 〈v,x1〉x1

for j ← 1 to k do
vj ← Avj−1

return vk

In this case we have v0 = α2x2 + · · · + αnxn, and thus ‖v0‖2 ≤ ‖v‖2 ≤ 2n with
high probability. Also,

vk = α2λ
k
2x2 + · · ·+ αnλ

k
nxn.

So if y = Akv0, and |α2| ≥ 1
2

(still with probability ≥ 0.6), then

〈y,x1〉 = 0,

and
yTAy

yTy
≥ λ2(1− ε)

1

1 + 4‖v0‖2(1− ε)2k
,

with proof identical to that in the previous section.
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3 Eigenvector of the Second Smallest Eigenvalue

of L

Now, how we compute the second smallest eigenvalue of L , as we originally set out
to do? We can alternatively look at the second largest eigenvalue of M = 2I −L .

In this case, if 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 are the eigenvalues of L , then
µ1 ≥ µ2 ≥ · · · ≥ µn are the eigenvalues of M , with µi = 2 − λi. In this case since
µn ≥ 0, it follows that M � 0.

Now, the eigenvector for the largest eigenvalue of M (and for the smallest eigen-
value of L ) is x1 = D1/2e. Then we can run Power2 on M to find y such that
〈y,x1〉 = 0, and

yTMy

yTy
≥ (1− ε)µ2 = (1− ε)(2− λ2).

We also have that

yTMy = yT (2I −L )y = 2yTy − yTL y.

Hence
yTL y ≤ (λ2 + 2ε− ελ2)yTy ≤ (2ε)yTy,

and so
yTL y

yTy
≤ λ2 + 2ε.

Note that if we want yT Ly
yTy

≤ 2λ2, we’ll need ε = λ2
2

. Recall that the running time

of Power2 is O((m log n)/ε); thus if λ2 is very small (for instance, λ2 = O( 1
n
)), the

running time could be much higher than nearly linear in m. So let’s explore other
methods!

Recall the pseudo inverse L † of L :

L † =
∑
i:λi 6=0

1

λi
xix

T
i .

Note that x1, . . . ,xn are still the eigenvectors of L † since(∑ 1

λi
xix

T
i

)
xj =

1

λj
xj

if j 6= 1, and (∑ 1

λi
xix

T
i

)
xj = 0xj

if j = 1.
So here’s an idea: we can run Power Method on L †! Since 0 = λ1 < λ2 ≤ · · · ≤ λn,

it follows that 1
λ2

is the largest eigenvalue of L †.
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But here’s a problem: it’s not cheap to compute pseudoinverses. It takes O(n2)
to write it down. /

However, we have a corresponding solution: notice that in the Power Method,
we never need to actually write down the pseudoinverse. All we have to do is to
compute L †v for some v such that 〈v,x1〉 = 0. , We can do this approximately in
O(m logc n/εc

′
) time, for some constants c, c′, as we will see in an upcoming lecture.

And so here is our algorithm.

Algorithm 3: Power Method

Pick v by drawing v(i) ∼ N(0, 1) for all i
v0 ← v − 〈v,x1〉x1, x1 = D1/2e
for j ← 1 to k do

vj ← L †vj−1
return vk

As before, v0 = α2x2 + · · ·+αnxn, ‖v0‖2 ≤ 2n with high probability, and |α2| ≥ 1
2

with constant probability. Then

y = (L †)kv0 =
n∑
i=2

αi
1

λki
xi.

Again we pick l to be the largest index such that λl ≤ (1 + ε)λ2, and in this case

yTL y =

(
n∑
i=2

αi
1

λki
xi

)T ( n∑
i=2

αi
1

λk−1i

xi

)

=
n∑
i=2

α2
i

1

λ2k−1i

≤
l∑

i=2

α2
i

1

λ2k−1i

+
1

(1 + ε)2k−1λ2k−12

n∑
i=l+1

α2
i

≤
l∑

i=2

α2
i

1

λ2k−1i

+
1

(1 + ε)2k−1λ2k−12

2n

≤
l∑

i=2

α2
i

1

λ2k−1i

+
8nα2

2

(1 + ε)2k−1λ2k−12

≤
(

1 +
8n

(1 + ε)2k−1

) l∑
i=2

α2
i

1

λ2k−1i

.

Also similarly to before, we can get that

yTy =
n∑
i=2

α2
i

1

λ2ki
≥

l∑
i=2

α2
i

1

λ2ki
≥ 1

(1 + ε)λ2

l∑
i=2

α2
i

1

λ2k−1i

.
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Therefore
yTL y

yTy
≤ λ2(1 + ε)

(
1 +

8n

(1 + ε)2k−1

)
≤ (1 + 2ε)λ2

for k = O(log n/ε) and n sufficiently large. In this case we can find λ2 and y approx-
imately, in time O(m logc+1 n/εc

′+1).
We end with an open question by Vishnoi: Can we find this vector with Rayleigh

ratio close to λ2 in nearly linear time without having to multiply by L †?
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