Recall that if we can find a vector \mathbf{x} such that $<\mathbf{x}, e>=0$ and such that $\mathbf{x}^{T} \mathscr{L} \mathbf{x} \leq$ $\left(\lambda_{2}+\epsilon\right) \mathbf{x}^{T} \mathbf{x}$, then we showed in Trevisan's algorithm that we can find $S \subset V$ such that such that the conductance $\phi(S) \leq \sqrt{2\left(\lambda_{2}+\epsilon\right)}$. In this lecture we will give an algorithm that finds such a vector.

1 Eigenvector of the Largest Eigenvalue

We begin by finding the eigenvector corresponding to the largest eigenvalue of a symmetric positive semidefinite matrix A.

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ be orthonormal eigenvectors, with $\lambda_{1} \geq \cdots \geq \lambda_{n}$ being the corresponding eigenvalues of A. Consider the following algorithm.

```
Algorithm 1: Power Method
    Pick \(\mathbf{v}_{0}\) by drawing \(\mathbf{v}_{0}(i) \sim N(0,1)\) for all \(i\)
    for \(j \leftarrow 1\) to \(k\) do
        \(\mathbf{v}_{j} \leftarrow A \mathbf{v}_{j-1}\)
    return \(\mathbf{v}_{k}\)
```

If $A \in \mathbb{R}^{n \times n}$ has m nonzero entries, then this algorithm runs in $O(k(m+n))$ time. Let us introduce a preliminary lemma regarding the vector \mathbf{v}_{0}.

Lemma 1 Let \mathbf{x} be a vector such that $\|\mathbf{x}\|=1$. Then for \mathbf{v} such that $\mathbf{v}(i) \sim N(0,1)$ for all i,

$$
\operatorname{Pr}\left[\left|\mathbf{x}^{T} \mathbf{v}\right| \geq \frac{1}{2}\right] \geq 2 \Phi\left(-\frac{1}{2}\right) \geq 0.6
$$

where $N(0,1)$ is the standard normal distribution, and Φ is the cdf of the standard normal. Also

$$
\operatorname{Pr}\left[\|\mathbf{v}\|^{2} \leq 2 n\right] \geq 1-e^{-n / 6}
$$

With that in mind, we can show that the vector we have constructed in Power Method has Rayleigh ratio reasonably close to that of the eigenvector of the largest eigenvalue.

[^0]Lemma 2 Let \mathbf{v} be such that $\mathbf{v}(i) \sim N(0,1)$ for all $i,\left|\mathbf{v}^{T} \mathbf{x}_{1}\right| \geq \frac{1}{2}, A \succeq 0$. Then for $k>0, \epsilon>0, \mathbf{y}=A^{k} \mathbf{v}$,

$$
\frac{\mathbf{y}^{T} A \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \geq \lambda_{1}(1-\epsilon) \frac{1}{1+4\|\mathbf{v}\|^{2}(1-\epsilon)^{2 k}}
$$

If we can show that the lemma is true, then for $k=O\left(\frac{\log n}{\epsilon}\right),\|\mathbf{v}\|^{2} \leq 2 n$, we have

$$
\frac{\mathbf{y}^{T} A \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \geq \lambda_{1}(1-\epsilon) \frac{1}{1+8 n(1-\epsilon)^{2 k}} \geq \lambda_{1}(1-\epsilon) \frac{1}{1+\frac{8}{n}} \geq \lambda_{1}(1-2 \epsilon)
$$

for n sufficiently large.
Proof: Let $\mathbf{v}=\alpha_{1} \mathbf{x}_{1}+\cdots+\alpha_{n} \mathbf{x}_{n}$, where $\alpha_{i}=\left\langle\mathbf{v}, \mathbf{x}_{i}\right\rangle$. Note that this implies

$$
\|\mathbf{v}\|^{2}=\mathbf{v}^{T} \mathbf{v}=\left(\alpha_{1} \mathbf{x}_{1}+\cdots \alpha_{n} \mathbf{x}_{n}\right)^{T}\left(\alpha_{1} \mathbf{x}_{1}+\cdots \alpha_{n} \mathbf{x}_{n}\right)=\sum_{i=1}^{n} \alpha_{i}^{2}
$$

We assumed that $\left|\alpha_{1}\right| \geq \frac{1}{2}$. Recall that the eigenvectors of A^{k} are still $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, with eigenvalues being $\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}$. Since $A \succeq 0$, it follows that $\lambda_{1}, \ldots, \lambda_{n} \geq 0$. Hence $\lambda_{1}^{k} \geq \cdots \geq \lambda_{n}^{k} \geq 0$. So

$$
\mathbf{y}=A^{k} \mathbf{v}=A^{k}\left(\alpha_{1} \mathbf{x}_{1}+\cdots+\alpha_{n} \mathbf{x}_{n}\right)=\alpha_{1} \lambda_{1}^{k} \mathbf{x}_{1}+\cdots+\alpha_{n} \lambda_{n}^{k} \mathbf{x}_{n}
$$

and hence

$$
\mathbf{y}^{T} A \mathbf{y}=\alpha_{1}^{2} \lambda_{1}^{2 k+1}+\cdots+\alpha_{n}^{2} \lambda_{n}^{2 k+1}
$$

Similarly,

$$
\mathbf{y}^{T} \mathbf{y}=\alpha_{1}^{2} \lambda_{1}^{2 k}+\cdots+\alpha_{n}^{2} \lambda_{n}^{2 k} .
$$

Let l be the largest index such that $\lambda_{l} \geq(1-\epsilon) \lambda_{1}$. Then

$$
\mathbf{y}^{T} A \mathbf{y} \geq \sum_{i=1}^{l} \alpha_{i}^{2} \lambda_{i}^{2 k+1} \geq(1-\epsilon) \lambda_{1} \sum_{i=1}^{l} \alpha_{i}^{2} \lambda_{i}^{2 k}
$$

We can also write

$$
\mathbf{y}^{T} \mathbf{y}=\sum_{i=1}^{l} \alpha_{i}^{2} \lambda_{i}^{2 k}+\sum_{i=l+1}^{n} \alpha_{i}^{2} \lambda_{i}^{2 k}
$$

where by definition of l and by the fact that $\left|\alpha_{1}\right| \geq \frac{1}{2}$,

$$
\begin{aligned}
\sum_{i=l+1}^{n} \alpha_{i}^{2} \lambda_{i}^{2 k} & \leq \lambda_{1}^{2 k}(1-\epsilon)^{2 k} \sum_{i=l+1}^{n} \alpha_{i}^{2} \\
& \leq \lambda_{1}^{2 k}(1-\epsilon)^{2 k}\|\mathbf{v}\|^{2} \\
& \leq 4 \alpha_{1}^{2} \lambda_{1}^{2 k}(1-\epsilon)^{2 k}\|\mathbf{v}\|^{2} \\
& \leq 4(1-\epsilon)^{2 k}\|\mathbf{v}\|^{2} \sum_{i=1}^{l} \alpha_{i}^{2} \lambda_{i}^{2 k}
\end{aligned}
$$

Hence it follows that

$$
\mathbf{y}^{T} \mathbf{y} \leq\left(1+4(1-\epsilon)^{2 k}\|\mathbf{v}\|^{2}\right) \sum_{i=1}^{l} \alpha_{i}^{2} \lambda_{i}^{2 k}
$$

and therefore

$$
\frac{\mathbf{y}^{T} A \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \geq \frac{(1-\epsilon) \lambda_{1} \sum_{i=1}^{l} \alpha_{i}^{2} \lambda_{i}^{2 k}}{\left(1+4(1-\epsilon)^{2 k}\|\mathbf{v}\|^{2}\right) \sum_{i=1}^{l} \alpha_{i}^{2} \lambda_{i}^{2 k}}=\lambda_{1}(1-\epsilon) \frac{1}{1+4\|\mathbf{v}\|^{2}(1-\epsilon)^{2 k}}
$$

as desired.

2 Eigenvector of the Second Largest Eigenvalue

Observe that if \mathbf{x}_{1} the eigenvector associated with the largest eigenvalue of the matrix A, then recall that

$$
\lambda_{2}=\max _{\mathbf{x}:\left(\mathbf{x}, \mathbf{x}_{1}\right\rangle=0} \frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
$$

So if we want to find a vector with Rayleigh ratio close to that of \mathbf{x}_{2}, we can just make sure that the vector \mathbf{x} satisfies the condition $\left\langle\mathbf{x}, \mathbf{x}_{1}\right\rangle=0$ and apply the Power Method.

```
Algorithm 2: Power2
    Pick \(\mathbf{v}\) by drawing \(\mathbf{v}(i) \sim N(0,1)\) for all \(i\)
    \(\mathbf{v}_{0} \leftarrow \mathbf{v}-\left\langle\mathbf{v}, \mathbf{x}_{1}\right\rangle \mathbf{x}_{1}\)
    for \(j \leftarrow 1\) to \(k\) do
        \(\mathbf{v}_{j} \leftarrow A \mathbf{v}_{j-1}\)
    return \(\mathbf{v}_{k}\)
```

In this case we have $\mathbf{v}_{0}=\alpha_{2} \mathbf{x}_{2}+\cdots+\alpha_{n} \mathbf{x}_{n}$, and thus $\left\|\mathbf{v}_{0}\right\|^{2} \leq\|\mathbf{v}\|^{2} \leq 2 n$ with high probability. Also,

$$
\mathbf{v}_{k}=\alpha_{2} \lambda_{2}^{k} \mathbf{x}_{2}+\cdots+\alpha_{n} \lambda_{n}^{k} \mathbf{x}_{n}
$$

So if $\mathbf{y}=A^{k} \mathbf{v}_{0}$, and $\left|\alpha_{2}\right| \geq \frac{1}{2}$ (still with probability ≥ 0.6), then

$$
\left\langle\mathbf{y}, \mathbf{x}_{1}\right\rangle=0
$$

and

$$
\frac{\mathbf{y}^{T} A \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \geq \lambda_{2}(1-\epsilon) \frac{1}{1+4\left\|\mathbf{v}_{0}\right\|^{2}(1-\epsilon)^{2 k}}
$$

with proof identical to that in the previous section.

3 Eigenvector of the Second Smallest Eigenvalue of \mathscr{L}

Now, how we compute the second smallest eigenvalue of \mathscr{L}, as we originally set out to do? We can alternatively look at the second largest eigenvalue of $\mathscr{M}=2 I-\mathscr{L}$.

In this case, if $0 \leq \lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n} \leq 2$ are the eigenvalues of \mathscr{L}, then $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$ are the eigenvalues of \mathscr{M}, with $\mu_{i}=2-\lambda_{i}$. In this case since $\mu_{n} \geq 0$, it follows that $\mathscr{M} \succeq 0$.

Now, the eigenvector for the largest eigenvalue of \mathscr{M} (and for the smallest eigenvalue of \mathscr{L}) is $\mathbf{x}_{1}=D^{1 / 2} \mathbf{e}$. Then we can run Power2 on \mathscr{M} to find \mathbf{y} such that $\left\langle\mathbf{y}, \mathbf{x}_{1}\right\rangle=0$, and

$$
\frac{\mathbf{y}^{T} \mathscr{M} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \geq(1-\epsilon) \mu_{2}=(1-\epsilon)\left(2-\lambda_{2}\right)
$$

We also have that

$$
\mathbf{y}^{T} \mathscr{M} \mathbf{y}=\mathbf{y}^{T}(2 I-\mathscr{L}) \mathbf{y}=2 \mathbf{y}^{T} \mathbf{y}-\mathbf{y}^{T} \mathscr{L} \mathbf{y}
$$

Hence

$$
\mathbf{y}^{T} \mathscr{L} \mathbf{y} \leq\left(\lambda_{2}+2 \epsilon-\epsilon \lambda_{2}\right) \mathbf{y}^{T} \mathbf{y} \leq(2 \epsilon) \mathbf{y}^{T} \mathbf{y}
$$

and so

$$
\frac{\mathbf{y}^{T} \mathscr{L} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \leq \lambda_{2}+2 \epsilon
$$

Note that if we want $\frac{\mathbf{y}^{T} \mathscr{L} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \leq 2 \lambda_{2}$, we'll need $\epsilon=\frac{\lambda_{2}}{2}$. Recall that the running time of Power2 is $O((m \log n) / \epsilon)$; thus if λ_{2} is very small (for instance, $\left.\lambda_{2}=O\left(\frac{1}{n}\right)\right)$, the running time could be much higher than nearly linear in m. So let's explore other methods!

Recall the pseudo inverse \mathscr{L}^{\dagger} of \mathscr{L} :

$$
\mathscr{L}^{\dagger}=\sum_{i: \lambda_{i} \neq 0} \frac{1}{\lambda_{i}} \mathbf{x}_{i} \mathbf{x}_{i}^{T} .
$$

Note that $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are still the eigenvectors of \mathscr{L}^{\dagger} since

$$
\left(\sum \frac{1}{\lambda_{i}} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right) \mathbf{x}_{j}=\frac{1}{\lambda_{j}} \mathbf{x}_{j}
$$

if $j \neq 1$, and

$$
\left(\sum \frac{1}{\lambda_{i}} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right) \mathbf{x}_{j}=0 \mathbf{x}_{j}
$$

if $j=1$.
So here's an idea: we can run Power Method on \mathscr{L}^{\dagger} ! Since $0=\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{n}$, it follows that $\frac{1}{\lambda_{2}}$ is the largest eigenvalue of \mathscr{L}^{\dagger}.

But here's a problem: it's not cheap to compute pseudoinverses. It takes $O\left(n^{2}\right)$ to write it down. $\cdot($

However, we have a corresponding solution: notice that in the Power Method, we never need to actually write down the pseudoinverse. All we have to do is to compute $\mathscr{L}^{\dagger} \mathbf{v}$ for some \mathbf{v} such that $\left\langle\mathbf{v}, \mathbf{x}_{1}\right\rangle=0$. © We can do this approximately in $O\left(m \log ^{c} n / \epsilon^{c^{\prime}}\right)$ time, for some constants c, c^{\prime}, as we will see in an upcoming lecture. And so here is our algorithm.

```
Algorithm 3: Power Method
    Pick \(\mathbf{v}\) by drawing \(\mathbf{v}(i) \sim N(0,1)\) for all \(i\)
    \(\mathbf{v}_{0} \leftarrow \mathbf{v}-\left\langle\mathbf{v}, \mathbf{x}_{1}\right\rangle \mathbf{x}_{1}, \mathbf{x}_{1}=D^{1 / 2} \mathbf{e}\)
    for \(j \leftarrow 1\) to \(k\) do
        \(\mathbf{v}_{j} \leftarrow \mathscr{L}^{\dagger} \mathbf{v}_{j-1}\)
    return \(\mathbf{v}_{k}\)
```

As before, $\mathbf{v}_{0}=\alpha_{2} \mathbf{x}_{2}+\cdots+\alpha_{n} \mathbf{x}_{n},\left\|\mathbf{v}_{0}\right\|^{2} \leq 2 n$ with high probability, and $\left|\alpha_{2}\right| \geq \frac{1}{2}$ with constant probability. Then

$$
\mathbf{y}=\left(\mathscr{L}^{\dagger}\right)^{k} \mathbf{v}_{0}=\sum_{i=2}^{n} \alpha_{i} \frac{1}{\lambda_{i}^{k}} \mathbf{x}_{i} .
$$

Again we pick l to be the largest index such that $\lambda_{l} \leq(1+\epsilon) \lambda_{2}$, and in this case

$$
\begin{aligned}
\mathbf{y}^{T} \mathscr{L}_{\mathbf{y}} & =\left(\sum_{i=2}^{n} \alpha_{i} \frac{1}{\lambda_{i}^{k}} \mathbf{x}_{i}\right)^{T}\left(\sum_{i=2}^{n} \alpha_{i} \frac{1}{\lambda_{i}^{k-1}} \mathbf{x}_{i}\right) \\
& =\sum_{i=2}^{n} \alpha_{i}^{2} \frac{1}{\lambda_{i}^{2 k-1}} \\
& \leq \sum_{i=2}^{l} \alpha_{i}^{2} \frac{1}{\lambda_{i}^{2 k-1}}+\frac{1}{(1+\epsilon)^{2 k-1} \lambda_{2}^{2 k-1}} \sum_{i=l+1}^{n} \alpha_{i}^{2} \\
& \leq \sum_{i=2}^{l} \alpha_{i}^{2} \frac{1}{\lambda_{i}^{2 k-1}}+\frac{1}{(1+\epsilon)^{2 k-1} \lambda_{2}^{2 k-1}} 2 n \\
& \leq \sum_{i=2}^{l} \alpha_{i}^{2} \frac{1}{\lambda_{i}^{2 k-1}}+\frac{8 n \alpha_{2}^{2}}{(1+\epsilon)^{2 k-1} \lambda_{2}^{2 k-1}} \\
& \leq\left(1+\frac{8 n}{(1+\epsilon)^{2 k-1}}\right) \sum_{i=2}^{l} \alpha_{i}^{2} \frac{1}{\lambda_{i}^{2 k-1}} .
\end{aligned}
$$

Also similarly to before, we can get that

$$
\mathbf{y}^{T} \mathbf{y}=\sum_{i=2}^{n} \alpha_{i}^{2} \frac{1}{\lambda_{i}^{2 k}} \geq \sum_{i=2}^{l} \alpha_{i}^{2} \frac{1}{\lambda_{i}^{2 k}} \geq \frac{1}{(1+\epsilon) \lambda_{2}} \sum_{i=2}^{l} \alpha_{i}^{2} \frac{1}{\lambda_{i}^{2 k-1}}
$$

Therefore

$$
\frac{\mathbf{y}^{T} \mathscr{L} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \leq \lambda_{2}(1+\epsilon)\left(1+\frac{8 n}{(1+\epsilon)^{2 k-1}}\right) \leq(1+2 \epsilon) \lambda_{2}
$$

for $k=O(\log n / \epsilon)$ and n sufficiently large. In this case we can find λ_{2} and \mathbf{y} approximately, in time $O\left(m \log ^{c+1} n / \epsilon^{c^{\prime}+1}\right)$.

We end with an open question by Vishnoi: Can we find this vector with Rayleigh ratio close to λ_{2} in nearly linear time without having to multiply by \mathscr{L}^{\dagger} ?

[^0]: ${ }^{0}$ This lecture is derived from Trevisan Chapter 4, https://people.eecs.berkeley.edu/~luca/ books/expanders.pdf and Vishnoi, Chapter 8, http://research.microsoft.com/en-us/um/ people/nvishno/site/Lxb-Web.pdf.

