
This is an attempt to recap what we have discovered thus far. We have been considering the problem of
finding a sparse cut in an undirected graph with capactities ue, subject to all-pairs demands. That is, we
would like to find

α = min
S⊂V

∑
e∈δ(S) ue

|S||V − S|
.

As was observed by Michel, this problem can be relaxed to the following problem that can be solved in
polynomial time:

α∗N = Min
∑
e∈E

uexe

subject to:

(NEG)
∑
i6=j

dx(i, j) ≥ 1

dx of negative type ,

where dx is a distance metric under edge lengths x. A negative type metric obeys the inequalities
∑
i,j dijzizj ≤

0 for all vectors z such that
∑
i zi = 0. We note that this is a relaxation of the sparsest cut problem since

for an optimal cut S, we can set xe = 1/|S||V − S| if e ∈ δ(S) and xe = 0 otherwise. Then the objective
function has the right value, and

∑
i 6=j dx(i, j) ≥ 1. Furthermore, for any z such that

∑
i zi = 0,∑

i,j

dijzizj =
1

|S||V − S|
∑

i∈S,j /∈S

zizj =
1

|S||V − S|
(
∑
i∈S

zi)(−
∑
i∈S

zi) ≤ 0.

We note in passing that the relaxation used by Leighton and Rao (and hence by Linial, London, and
Rabinovich) is the same as the one above without the negative type restriction. Let α∗LR denote the value
of their relaxation. Certainly α∗LR ≤ α∗N ; we will show below that there are important instances for which
α∗N > α∗LR.

We give our main result (thus far) below. For any non-negative matrix M with mii = 0, we denote the
Laplacian of the matrix L(M) as

L(M)ij =

{ ∑
kmik i = j

−mij i 6= j

Theorem 1 Let f be any flow in the graph G obeying capacities u but not necessarily flow conservation.
Let F be a matrix such that Fij denotes the amount of flow from i to j. Then if λ2 is the second smallest
eigenvalue of L(F ), α∗N ≥ λ2/n, and there exists a flow F such that α∗N = λ2/n.

A consequence of this theorem is that bounded-degree expanders (not necessary regular ones!) with
constant expansion ratio are not a bad case for the negative type relaxation. Leighton and Rao have shown
that α > Ω(log n)α∗LR for bounded-degree expanders. However, consider the flow on a bounded-degree
expander in which each vertex sends one unit of flow to each of its neighbors. This is a feasible flow in this
graph [Modulo having edges of the appropriate capacity in each direction...] Then the Laplacian of this flow
matrix is simply L(A), where A is the adjacency matrix of the expander. If γ is the expansion ratio of the
graph, then the sparsest cut has value roughly O(γ/n), and λ2 of the Laplacian is known to have value Ω(γ2)
(Alon).

Proof: As one might expect from the theorem statement, the theorem follows by duality. A more detailed
description of the relaxation (NEG) is the following:

α∗N = Min
∑
e∈E

uexe

subject to:

(NEG′)
∑
i 6=j

dij ≥ 1

1



∑
e∈Pk

ab

xe ≥ dab ∀a, b-paths P kab

∑
i,j

dijzizj ≤ 0 ∀z,
∑
i

zi = 0,

dij ≥ 0 ∀i 6= j

xe ≥ 0 ∀e ∈ E

where P kab is the kth path from a to b in an enumeration of all a, b paths. Taking the dual, we obtain

α∗N = Max w

subject to:

(D) w −
∑
k

fkij −
∑
z

azzizj ≤ 0 ∀i 6= j∑
k,a,b:e∈Pk

ab

fkab ≤ ue ∀e ∈ E

az ≥ 0 ∀z,
∑
i

zi = 0

fkij ≥ 0 ∀i, j, k
w ≥ 0

Observe that fkij corresponds to a flow on the kth path from i to j, such that the flows obey the capacity

constraints. We set fij =
∑
k f

k
ij , and F = (fij). Notice that since az is positive and non-zero only when

zT1 = 0, then
∑
z azz

T z = M , where M is a positive semidefinite matrix such that M1 = 0. Since the az do
not participate in the objective function, there are no constraints on the diagonal, and adding any sufficiently
large diagonal to any matrix makes it positive semidefinite, we can rewrite the relaxation compactly in matrix
notation as follows:

α∗N = Max w

subject to:

(D′) w(J − I)− F + diag(ui) psd

[w(J − I)− F + diag(ui)]
T1 = 0

F a flow obeying capacity constraints

w ≥ 0,

where J is the all 1’s matrix, and I is the identity. To prove our theorem, let F be any feasible flow;
we will try to find the maximum value x allowed by such a flow. We set ui =

∑
j fij − x(n − 1) so that

x(J − I) − F + diag(ui) = xJ − xnI + L(F ). Then [xJ − xnI + L(F )]T1 = 0. Notice that L(F ) has an
eigenvalue of 0 for the eigenvector 1. Let v2 be the eigenvector for the second smallest eigenvalue of L(F ),
λ2. Then since vT2 1 = 0, v2 is also the eigenvector of the second smallest eigenvalue of xJ − xnI + L(F ), of
value −xn + λ2. So the matrix xJ − xnI + L(F ) is psd iff x ≤ λ2/n. Thus we can set x = λ2/n, and the
theorem follows.

We can say something about the optimality of the relaxation in one particular case (so far).

Theorem 2 Let F be a path-packing that attains the maximum of maxF λ2(L(F ))/n. If λ2(L(F )) <
λ3(L(F )), then λ2(L(F ))/n = α.

Proof: An alternate formulation of λ2(L(F ))/n (see Mohar and Poljak) is

min
x 6=c1

∑
i,j fij(xi − xj)2∑
i,j(xi − xj)2

.
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If F attains the maximum and the second eigenvalue of L(F ) is unique and achieved by a vector x, then we
know that: (1) no perturbation of F can increase λ2(L(F )); (2) no perturbation of x can decrease λ2(L(F )).

Consider the ordering imposed by the xi: assume that x1 ≤ · ≤ xn. We can show that F must have
a highly specific form. By (1), for any fij , i < j, all paths packed between i and j must visit vertices in
increasing order. Suppose not, and for some path from i to j, visits i1 then i2, where i1 > i2. Then we can
increase λ2(L(F )) by splitting the path from i to j into 3 paths: the path from i to i1, the path from i2 to
i1, and the path from i2 to j. By (1) we can also show that for any i, either fij = 0 for j > i or fji = 0 for
j < i: if there exists a < i < b such that fai > 0 and fib > 0, then we can increase λ2(L(F )) by taking ε of
the paths from a to i and i to b and changing it into paths from a to b. Finally, the path-packings must be
nested in the sense that it cannot be the case that fac > 0 and fbd > 0 for a < b < c < d and that fac > 0
and fbc > 0 for a < b < c. Suppose that one of the two can happen: overall all such quadruplets and triplets,
let a < b < c < d be the quadruplet that minimizes c− b or a < b < c the triplet that minimizes c− b. Then
we can decrease λ2(F ) by swapping xb and xc.
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