ORIE 6334 Approximation Algorithms

 November 12, 2009Problem Set 5
Due Date: December 1, 2009

1. W\&S Exercise 6.5

2. W\&S Exercise 11.2

3. W\&S Exercise 11.3

4. Consider the generalized assignment problem: we are given a set J of n jobs, and a set M of m machines. There is a cost $c_{i j} \geq 0$ for assigning job j to machine i; if job j is assigned to machine i, it requires $p_{i j} \geq 0$ units of processing time on machine i. We are also given as input processing bounds T_{i} for all machines $i \in M$. The goal is to find an assignment of jobs to machines that minimizes the total cost of the assignment, and such that the total amount of processing assigned to machine i is at most T_{i} for all $i \in M$.
We wish to give a linear programming relaxation of the problem. We let E denote a set of possible (i, j) pairs that we could make in the assignment. Initially, E consists of all (i, j) such that $i \in M, j \in J$ and $p_{i j} \leq T_{i}$. We also have a subset $M^{\prime} \subseteq M$, where initially $M^{\prime}=M$, and a subset $J^{\prime} \subseteq J$, where initially $J^{\prime}=J$. Then the relaxation is as follows:

$$
\begin{aligned}
\operatorname{Min} \sum_{(i, j) \in E} c_{i j} x_{i j} & \\
\sum_{i \in M:(i, j) \in E} x_{i j} & =1
\end{aligned} \quad \forall j \in J^{\prime} .
$$

Consider the following algorithm: While $J^{\prime} \neq \emptyset$, we find a basic solution to the LP relaxation. We remove from E any pair (i, j) such that $x_{i j}=0$. If there is a variable $x_{i j}=1$, then we assign job j to machine i; remove j from J^{\prime} and reduce T_{i} by $p_{i j}$. Let J_{i} be the jobs fractionally assigned to machine $i \in M^{\prime}$, so that $J_{i}=\left\{j \in J: x_{i j}>0\right\}$. If there is a machine i such that $\sum_{j \in J_{i}} x_{i j} \geq 1$ and $1 \leq\left|J_{i}\right| \leq 2$, then remove i from M^{\prime}.
(a) Prove that for any basic solution x to the LP, either there is some $(i, j) \in E$ such that $x_{i j} \in\{0,1\}$, or there exists some $i \in M^{\prime}$ with $\sum_{j \in J_{i}} x_{i j} \geq 1$ and $1 \leq\left|J_{i}\right| \leq 2$.

You may assume the following for any basic solution x to the linear program: there exist subsets $J^{\prime \prime} \subseteq J^{\prime}$ and $M^{\prime \prime} \subseteq M^{\prime}$ such that the LP constraint $\sum_{j \in J:(i, j) \in E} p_{i j} x_{i j}=T_{i}$ for all $i \in M^{\prime \prime}$, the vectors corresponding to the LP rows for $J^{\prime \prime}$ and $M^{\prime \prime}$ are linearly independent, and $\left|J^{\prime \prime}\right|+\left|M^{\prime \prime}\right|$ is equal to the number of variables $x_{i j}>0$.
(b) Prove that the algorithm above returns a solution with total cost at most OPT, and such that machine i is assigned total processing time $2 T_{i}$ for all $i \in M$.

