ORIE 6334 Approximation Algorithms

October 1, 2009

Problem Set 3

Due Date: October 24, 2009

- 1. W&S Exercise 5.2
- 2. W&S Exercise 5.3
- 3. W&S Exercise 5.5
- 4. Consider the problem of maximizing a non-negative submodular function $f : 2^V \to \Re^{\geq 0}$. Suppose we select a random set S by including each $i \in V$ with probability 1/2. We will show that $E[f(S)] \geq \frac{1}{4}$ OPT.
 - (a) Given an $A \subseteq V$, let A(p) be the random set of elements obtained by including each $i \in A$ with probability p. Prove that

$$E[f(A(p))] \ge (1-p)f(\emptyset) + pf(A).$$

(b) Now prove that for $A \subseteq V$ and $B \subseteq V$, prove that

 $E[f(A(p)\cup B(q))] \ge (1-p)(1-q)f(\emptyset) + p(1-q)f(A) + (1-p)qf(B) + pqf(A\cup B).$

(Hint: for a fixed A', consider the function $g(T) = f(A' \cup T)$. Prove that g is submodular. What is E[g(B(q))]?)

- (c) Let $O \subseteq V$ be an optimal set so that f(O) = OPT. Apply the previous part to the case A = O, B = V O, and p = q = 1/2 to conclude that $E[V(1/2)] \ge \frac{1}{4} OPT$.
- (d) What can you show if f is symmetric (i.e. f(S) = f(V S) for all $S \subseteq V$)?
- 5. W&S Exercise 6.2