ORIE 6334 Approximation Algorithms
 October 1, 2009
 Problem Set 3

Due Date: October 24, 2009

1. W\&S Exercise 5.2
2. W\&S Exercise 5.3
3. W\&S Exercise 5.5
4. Consider the problem of maximizing a non-negative submodular function f : $2^{V} \rightarrow \Re \geq 0$. Suppose we select a random set S by including each $i \in V$ with probability $1 / 2$. We will show that $E[f(S)] \geq \frac{1}{4}$ OPT.
(a) Given an $A \subseteq V$, let $A(p)$ be the random set of elements obtained by including each $i \in A$ with probability p. Prove that

$$
E[f(A(p))] \geq(1-p) f(\emptyset)+p f(A)
$$

(b) Now prove that for $A \subseteq V$ and $B \subseteq V$, prove that
$E[f(A(p) \cup B(q))] \geq(1-p)(1-q) f(\emptyset)+p(1-q) f(A)+(1-p) q f(B)+p q f(A \cup B)$.
(Hint: for a fixed A^{\prime}, consider the function $g(T)=f\left(A^{\prime} \cup T\right)$. Prove that g is submodular. What is $E[g(B(q))]$?)
(c) Let $O \subseteq V$ be an optimal set so that $f(O)=$ OPT. Apply the previous part to the case $A=O, B=V-O$, and $p=q=1 / 2$ to conclude that $E[V(1 / 2)] \geq \frac{1}{4}$ OPT.
(d) What can you show if f is symmetric (i.e. $f(S)=f(V-S)$ for all $S \subseteq V)$?
5. W\&S Exercise 6.2

