ORIE 6334 Approximation Algorithms

Problem Set 2

Due Date: October 1, 2009

1. Suppose an undirected graph G has a Hamiltonian path. Give a polynomialtime algorithm to find a path of length $\Omega(\log n)$.
2. In the edge-disjoint paths problem in directed graphs, we are given as input a directed graph $G=(V, A)$ and k source-sink pairs $s_{i}, t_{i} \in V$. The goal of the problem is to find edge-disjoint paths so that as many source-sink pairs as possible have a path from s_{i} to t_{i}. More formally, let $S \subseteq\{1, \ldots, k\}$. We want to find S and paths P_{i} for all $i \in S$ such that $|S|$ is as large as possible and for any $i, j \in S, i \neq j, P_{i}$ and P_{j} are edge-disjoint $\left(P_{i} \cap P_{j}=\emptyset\right)$.
Consider the following greedy algorithm for the problem. Let ℓ be the maximum of \sqrt{m} and the diameter of the graph, where $m=|A|$ is the number of input arcs. For i from 1 to k, we check to see if there exists a $s_{i}-t_{i}$ path of length at most ℓ in the current graph. If there is such a path P_{i}, we add i to S and remove the arcs of P_{i} from the graph.
Show that this greedy algorithm is an $\Omega(1 / \ell)$-approximation algorithm for the edge-disjoint paths problem in directed graphs.
3. W\&S Exercise 4.4
4. W\&S Exercise 4.6
