ORIE 6334 Approximation Algorithms

September 17, 2009

Problem Set 2

Due Date: October 1, 2009

- 1. Suppose an undirected graph G has a Hamiltonian path. Give a polynomialtime algorithm to find a path of length $\Omega(\log n)$.
- 2. In the *edge-disjoint paths* problem in directed graphs, we are given as input a directed graph G = (V, A) and k source-sink pairs $s_i, t_i \in V$. The goal of the problem is to find edge-disjoint paths so that as many source-sink pairs as possible have a path from s_i to t_i . More formally, let $S \subseteq \{1, \ldots, k\}$. We want to find S and paths P_i for all $i \in S$ such that |S| is as large as possible and for any $i, j \in S, i \neq j, P_i$ and P_j are edge-disjoint $(P_i \cap P_j = \emptyset)$.

Consider the following greedy algorithm for the problem. Let ℓ be the maximum of \sqrt{m} and the diameter of the graph, where m = |A| is the number of input arcs. For *i* from 1 to *k*, we check to see if there exists a s_i - t_i path of length at most ℓ in the current graph. If there is such a path P_i , we add *i* to *S* and remove the arcs of P_i from the graph.

Show that this greedy algorithm is an $\Omega(1/\ell)$ -approximation algorithm for the edge-disjoint paths problem in directed graphs.

- 3. W&S Exercise 4.4
- 4. W&S Exercise 4.6