
ORIE 6330 Network Flows November 1, 2012

Problem Set 5

Due Date: November 15, 2012

1. In class, when considering the minimum-cost circulation problem we showed that we
could cancel all negative-cost cycles in O(m2n2 log(nC)) time. When considering the
generalized circulation problem, we can also cancel all flow generating cycles by using
this algorithm. We do this by considering costs c(i, j) = − log γ(i, j) and cancelling
negative-cost cycles. However, the costs c(i, j) are no longer integral, which was an
assumption needed to prove the running time above. Assume that the gains γ(i, j) are
ratios of integers that are bounded in absolute value by B. Show that in this case, the
running time of the cycle cancelling algorithm we used in class is O(m2n3 log(nB)).

2. In the minimum-cost generalized circulation problem, we are given costs c(i, j) in
addition to gains γ(i, j) and capacities u(i, j). The goal is to find a generalized circu-
lation f that minimizes

∑
(i,j)∈A c(i, j)f(i, j). A generalized circulation is a generalized

pseudoflow that has ef (i) = 0 for all i ∈ V .

For the generalized flow problem we considered in class, we showed that the flow is
maximum if and only if there are no generalized augmenting paths. In the case of the
minimum-cost generalized circulation problems, the objects of interest are unit gain
cycles and bicycles. A unit gain cycle C has γ(C) = 1. A bicycle has a flow-generating
cycle C1 connected by a path (possibly trivial) to a flow-absorbing cycle C2.

Prove that a minimum-cost generalized circulation f is optimal if and only if there are
no negative-cost unit gain cycles and no negative-cost bicycles in the residual graph
Gf .

3. In Wallacher’s algorithm, we cancel cycles that tradeoff cost versus residual capacity.
In this exercise, we consider another way of doing this that uses some ideas from the
capacity scaling algorithm discussed in class. One way to improve the situation is
to make sure that every iteration of cycle canceling considers only arcs with “large
enough” residual capacity. Given a circulation f , potentials p and a parameter ∆, let
Af (∆) = {(i, j) ∈ Af : uf (i, j) ≥ ∆}. Call an arc (i, j) ∈ Af admissible if cp(i, j) < 0
and ∆-admissible if (i, j) is admissible and (i, j) ∈ Af (∆). Let’s say that cycle Γ is a
∆-cycle if Γ ⊆ Af (∆), cp(i, j) ≤ 0 for all (i, j) ∈ Γ, and cp(i, j) < 0 for some (i, j) ∈ Γ.
Note that this implies cp(Γ) = c(Γ) < 0. We give a procedure Find∆Cycle(p, i, j)
that takes as input node potentials p and some ∆-admissible arc (i, j), and uses them
to find a ∆-cycle Γ.

We can then use this subroutine in Algorithm 1, Cancel∆Cycles.

(a) Prove that the subroutine Find∆Cycle does not create any new ∆-admissible
arcs.

(b) Prove that if the subroutine Find∆Cycle returns a cycle, it is a ∆-cycle.

5-1



Let S be the set of nodes reachable from j via arcs in Af (∆)− {(j, i)}
if i /∈ S then

p(k)←
{
p(k) + cp(i, j) if k ∈ S
p(k) otherwise

else
Compute shortest j-k path distance p̃(k) using arcs in Af (∆) and costs

max(0, cp(i, j))
p̃max = maxk∈S p̃(k)

p(k)←
{
p(k) + p̃(k)− p̃max k ∈ S
p(k) otherwise

if cp(i, j) < 0 then
Let Γ = {(i, j)} + shortest path from j to i

return Γ, p′

Procedure Find∆Cycle(p, i, j)

f ← 0
p← 0

∆← 2dlogUe

while ∆ ≥ 1 do
while there is a ∆-admissible arc (i, j) do

(Γ, p)←Find∆Cycle (p, i, j)
if Γ 6= ∅ then

Cancel Γ
Update f

∆← ∆/2

return f

Algorithm 1: Another cycle-canceling algorithm, Cancel∆Cycles.

(c) Prove that either Find∆Cycle returns a cycle containing (i, j) or makes (i, j)
inadmissible.

(d) Prove that at the start of the inner while loop, uf (i, j) < 2∆ for each admissible
arc (i, j), and that this remains true through the execution of the while loop.

(e) Prove that in each iteration of the inner while loop, the number of ∆-admissible
arcs strictly decreases.

(f) Prove that if the algorithm terminates, it correctly returns a minimum-cost cir-
culation.

(g) Suppose that we have an O(m+ n log n) time algorithm for computing shortest
paths in graphs with nonnegative edge lengths. Prove that the algorithm runs
in time O((m logU)(m+ n log n)).

5-2


