
ORIE 6330 Network Flows September 27, 2012

Problem Set 3

Due Date: October 18, 2012

1. Give an O(mn) time algorithm to find a blocking flow in a directed graph G = (V,A)
with capacities u(i, j) for (i, j) ∈ A when there are no positive capacity cycles in the
graph.

2. In some graphs, a blocking flow is also a maximum flow. This is true in series-parallel
graphs. Series-parallel graphs can be constructed inductively. A graph with a single
arc from s to t is the simplest series-parallel graph.

s t

Two series-parallel graphs G1 and G2 can be combined into a new series-parallel graph
through either a series composition or a parallel composition. In a series composition,
the t node of G1 is identified with the s node of G2, and the s node of G1 becomes
the s node of the new graph, while the t node of G2 becomes the t node of the new
graph. See Figure 1.

In a parallel composition, the s nodes of G1 and G2 are identified, and the t nodes
of G1 and G2 are identified. The identified s nodes are the s node of the new graph,
and the identified t nodes are the t node of the new graph. See Figure 2.

(a) Prove that a blocking flow in a series-parallel graph is also a maximum flow.

(b) Show that series-parallel graphs have no positive capacity cycles, and conclude
that there is an O(mn) time algorithm for finding a maximum flow in series-
parallel graphs.

3. Recall that in class we showed how to find a minimum global cut in undirected graphs
via MA orderings. Here we will see how to use MA orderings to compute a maximum
s-t flow in a directed graph.

We compute an MA ordering in the following way. Let the source vertex s be the
first vertex in the ordering; we set v1 = s. In general, we choose the next vertex vk in
the ordering to maximize uf (δ(Wk−1, vk)), where Wk−1 = {v1, . . . , vk−1}, vk /∈Wk−1,
δ(Wk−1, vk) = {(i, vk) ∈ A : i ∈ Vk−1}, and uf (X) =

∑
(i,j)∈X uf (i, j) for X ⊆ A.

Suppose the sink vertex t = v`. Then let α = mink=2,...,` uf (δ(Wk−1, vk)).

(a) Given the MA ordering, prove that one can augment the current flow f by α
units of flow in O(m) time.

(b) Show that the maximum flow in the residual graph is no more than nα.

3-1

s1 G1 t1 s2 G2 t2

t1/s2G1s1 G2 t2

Figure 1: Series composition.

s1 G1 t1 s2 G2 t2

s1/s2 t1/t2

G1

G2

Figure 2: Parallel composition.

(c) Given an O(m + n log n) time algorithm for finding an MA ordering, use the
items above to give an O((m + n log n)n log(mU)) time algorithm for finding a
maximum s-t flow.

4. Let G = (V,A) be a directed graph, with costs c(i, j) for all (i, j) ∈ A.

(a) Using Problem 4 of Problem Set 2, show that the value

µ = min
cycles Γ∈G

c(Γ)

|Γ|

can be computed in O(mn) time, where c(Γ) =
∑

(i,j)∈Γ c(i, j).

(b) Given the computation above, show how to find the cycle Γ for which

µ =
c(Γ)

|Γ|

in O(n2) time.

3-2

5. (Bonus) In problem 1 above, one problem gave a O(mn) time algorithm for finding a
blocking flow. We can derive a faster algorithm assuming the existence of a special
data structure called dynamic trees. The data structure maintains a vertex-disjoint set
of rooted trees. Each vertex has a real-valued cost. The data structure can perform
each of the following operations in O(log n) amortized time:

• maketree(i): Create a new tree containing the single vertex i of cost zero.

• findroot(i): Return the root of the tree containing vertex i.

• findcost(i): Return (j, x), where x is the minimum cost of a vertex on the tree
path from i to findroot(i) and j is the last vertex on this path of cost x.

• addcost(i, x): Add x to the cost of every vertex on the path from i to findroot(i).

• link(i, j): Combine the two trees containing vertices i and j by adding the edge
(i, j). i must be the root of a tree.

• cut(i): Divide the tree containing vertex i into two trees by deleting the edge out
of i. i must not be the root of a tree.

Show that by using the dynamic trees data structure one can obtain an O(m log n)
time algorithm for finding a blocking flow in an acyclic directed graph.

3-3

