ORIE 6330 Network Flows September 13, 2012

Problem Set 2

Due Date: September 27, 2012

1. In class, we discussed some tricks for speeding up the push/relabel algorithm in prac-

tice. Here is another such trick, called gap relabeling. Suppose there is a value k < n
such that there are no nodes i with d(i) = k, but there are active nodes j of distance
k < d(j) < n. Prove that setting d(j) = n for all such nodes gives a valid distance
labeling. Note that if we use the variant of the algorithm in which a node is active
only if ef(i) > 0 and d(i) < n, then this relabeling can reduce the number of active
nodes.

. Another variant of the push-relabel algorithm is called FIFO push-relabel. This ver-
sion maintains a queue of active nodes; initially all active nodes are added to the
queue. The algorithm takes a node 4 from the front of the queue and keeps perform-
ing push and relabel operations to ¢ until there is no longer any excess at ¢. If pushing
flow from 7 to j causes j to become active, and j is not already in the queue, the
algorithm adds j to the end of the queue.

To bound the running time of the algorithm, we need to bound the number of nonsat-
urating pushes performed by the algorithm. To do this, we use a potential function
argument on passes over the queue. The first pass over the queue ends when the
algorithm has performed a discharge operation on all the nodes initially added to the
queue. In general, the kth pass to the queue ends when the algorithm has performed a
discharge operation on all the nodes added to the queue in the (k—1)st pass. Consider
the potential function ® = max,.tiye ; (7).

(a) Use the potential function to prove that the algorithm makes O(n?) passes.

(b) Argue that the bound on the number of passes implies there are O(n?) nonsat-
urating pushes.

(c) Finally, argue that the FIFO version of push-relabel takes O(n?) time.
. In a variation of the normal maximum flow problem, we have a parametric network,
in which the capacities of arcs leaving the source and entering the sink vary with a
parameter A. Let u(i,j, \) be the capacity of arc (i, j) for parameter \. In particular,
we have

e u(s,j,A) is a nondecreasing function of A for all j # ¢;

e u(i,t,\) is a nonincreasing function of A for all i # s;

o u(i,j,A) =u(i,j) for all i # s and j # t.
In the parametric max flow problem, in addition to the usual input for the maximum

flow problem, we are also given the values A1 < Ao < .-+ < Ay, and the capacities
of the arcs u(i,j, \x) for all (i,j) € A, 1 < k < . The goal is to find flow values

2-1



fi,. .., fr and minimum s-t cuts Si,...,.S for the flow problems associated with the
capacities given by the input Aq1,..., .

(a) Show that the push/relabel algorithm for the maximum flow problem can be used
to solve the parametric maximum flow problem in O(n?(¢ + m)) time. (Hint:
Start by solving the flow problem for A;. What should you do after that?)

(b) Show that S; C S5 C -+ C Sp.

(c) Show that there are at most n — 1 distinct sets among the Sk.

4. Consider the problem of finding shortest paths in a directed graph:

Shortest paths in directed graphs
e Input:
— A directed graph G = (V, A)
— Lengths [(7, ) for all (i,j) € A, integer, possibly negative; however, no negative
length cycles
— Source vertex s € V.

e Goal: Find length d(v) of shortest path from s to v for all v € V.

The Bellman-Ford shortest path algorithm computes d(i) by computing d (i), the
shortest walk (i.e. a path in which vertices can be repeated) between s and i using
exactly k arcs.

(a) Prove that di(j) can be computed by the recurrence

d(j) = min [dp_1(i) + (3, )]
(i,5)eA
(b) Let hy(i) = ming—, _;dg(i). Prove that if the graph has no negative-length cycle
then hy,_1(i) = d(i) for all i € V. Moreover, show that the graph has no negative-
length cycle iff for all i € V, d,,(i) > hy—1(i). (Hint for the if part: prove that if
hn(i) = hp—1(3) for all i then h.(i) = hy (i) for all ¢ > n.)

(c) Prove that this algorithm runs in O(mn) time.

2-2



