
ORIE 6330 Network Flows September 13, 2012

Problem Set 2

Due Date: September 27, 2012

1. In class, we discussed some tricks for speeding up the push/relabel algorithm in prac-
tice. Here is another such trick, called gap relabeling. Suppose there is a value k < n
such that there are no nodes i with d(i) = k, but there are active nodes j of distance
k < d(j) < n. Prove that setting d(j) = n for all such nodes gives a valid distance
labeling. Note that if we use the variant of the algorithm in which a node is active
only if ef (i) > 0 and d(i) < n, then this relabeling can reduce the number of active
nodes.

2. Another variant of the push-relabel algorithm is called FIFO push-relabel. This ver-
sion maintains a queue of active nodes; initially all active nodes are added to the
queue. The algorithm takes a node i from the front of the queue and keeps perform-
ing push and relabel operations to i until there is no longer any excess at i. If pushing
flow from i to j causes j to become active, and j is not already in the queue, the
algorithm adds j to the end of the queue.

To bound the running time of the algorithm, we need to bound the number of nonsat-
urating pushes performed by the algorithm. To do this, we use a potential function
argument on passes over the queue. The first pass over the queue ends when the
algorithm has performed a discharge operation on all the nodes initially added to the
queue. In general, the kth pass to the queue ends when the algorithm has performed a
discharge operation on all the nodes added to the queue in the (k−1)st pass. Consider
the potential function Φ = maxactive i d(i).

(a) Use the potential function to prove that the algorithm makes O(n2) passes.

(b) Argue that the bound on the number of passes implies there are O(n3) nonsat-
urating pushes.

(c) Finally, argue that the FIFO version of push-relabel takes O(n3) time.

3. In a variation of the normal maximum flow problem, we have a parametric network,
in which the capacities of arcs leaving the source and entering the sink vary with a
parameter λ. Let u(i, j, λ) be the capacity of arc (i, j) for parameter λ. In particular,
we have

• u(s, j, λ) is a nondecreasing function of λ for all j 6= t;

• u(i, t, λ) is a nonincreasing function of λ for all i 6= s;

• u(i, j, λ) = u(i, j) for all i 6= s and j 6= t.

In the parametric max flow problem, in addition to the usual input for the maximum
flow problem, we are also given the values λ1 < λ2 < · · · < λ`, and the capacities
of the arcs u(i, j, λk) for all (i, j) ∈ A, 1 ≤ k ≤ `. The goal is to find flow values

2-1



f1, . . . , f` and minimum s-t cuts S1, . . . , S` for the flow problems associated with the
capacities given by the input λ1, . . . , λk.

(a) Show that the push/relabel algorithm for the maximum flow problem can be used
to solve the parametric maximum flow problem in O(n2(` + m)) time. (Hint:
Start by solving the flow problem for λ1. What should you do after that?)

(b) Show that S1 ⊆ S2 ⊆ · · · ⊆ S`.
(c) Show that there are at most n− 1 distinct sets among the Sk.

4. Consider the problem of finding shortest paths in a directed graph:

Shortest paths in directed graphs

• Input:

– A directed graph G = (V,A)

– Lengths l(i, j) for all (i, j) ∈ A, integer, possibly negative; however, no negative
length cycles

– Source vertex s ∈ V .

• Goal: Find length d(v) of shortest path from s to v for all v ∈ V .

The Bellman-Ford shortest path algorithm computes d(i) by computing dk(i), the
shortest walk (i.e. a path in which vertices can be repeated) between s and i using
exactly k arcs.

(a) Prove that dk(j) can be computed by the recurrence

dk(j) = min
(i,j)∈A

[dk−1(i) + l(i, j)].

(b) Let hl(i) = mink=1,...,l dk(i). Prove that if the graph has no negative-length cycle
then hn−1(i) = d(i) for all i ∈ V . Moreover, show that the graph has no negative-
length cycle iff for all i ∈ V , dn(i) ≥ hn−1(i). (Hint for the if part: prove that if
hn(i) = hn−1(i) for all i then hc(i) = hn(i) for all c ≥ n.)

(c) Prove that this algorithm runs in O(mn) time.

2-2


