
ORIE 633 Network Flows October 2, 2007

Lecture 9

Lecturer: David P. Williamson Scribe: Qiu Wang

1 Efficient algorithms for max flow

1.1 Blocking flow and Dinic’s algorithm

In this lecture, we’ll discuss about some other efficient algorithms for computing a maximum
flow. They are based on the concept of a blocking flow.

Definition 1 A flow f in G is blocking if every s-t path in G has some arc saturated.

Every maximum flow is obviously also a blocking flow. Is every blocking flow a maximum
flow? No, Figure 1 is a counterexample.

Figure 1: A blocking flow is not necessary a max flow. Solid arrows in the top figure show
an augmenting path that gives a blocking flow. Bold arrows in the residual graph show
another augmenting path.

As shown in Figure 1, there exists an s-t path in the residual graph, which implies that
the current flow is not maximum.

Let di be the distance of node i to sink t.

9-1

Definition 2 An arc is called admissible if (i, j) ∈ Af and di = dj + 1.

Note that an admissible arc is on some shortest path to t. We now turn to an algorithm
that use blocking flows as a subroutine.

Dinic’s Algorithm (Dinic 1970)

f ← 0
while ∃s-t path in Gf

Compute distances di to sink t in Gf ∀i ∈ V

Find blocking flow f̃ in graph G̃ with arcs Ã = {(i, j) ∈ Af : di = dj + 1}
capacity uf

ij

f ← f + f̃ .

In the problem set, we considered an augmenting path algorithm in which we sent flow
down the shortest path in the residual graph each time. In Dinic’s algorithm we effectively
saturate all the shortest paths at the same time.

The running time of the algorithm depends on how fast we can find a blocking flow.
The following theorem shows what we can do so relatively quickly.

Theorem 1 Blocking flows in acyclic graphs can be found in O(mn) time, but if fancy data
structures are used, then they can be found in O(m log n) time.

The easier part of the theorem is a problem on the current problem set; the harder part
will be a bonus problem on a later problem set.

Note that the efficient algorithms for computing blocking flows are for acyclic graphs.
The set of admissible arcs is acyclic, otherwise we would have an inconsistency of the shortest
path distances di = dj + 1; we cannot have a cycle of edges all of which are on a shortest
path to the sink.

The following lemma is the key to proving a bound on the running time of Dinic’s
algorithm.

Lemma 2 The distance to the sink ds strictly increases in each iteration of the algorithm.

Clearly this implies that the algorithm takes at most n iterations. Given the two blocking
flow algorithms mentioned above, we get the following results.

Theorem 3 Dinic’s algorithm can be implemented in O(mn2) time (Dinic 1970), or O(mn log n)
time (Sleater, Tarjan 1980).

Now we turn to the proof of the lemma.
Proof of Lemma 2: Let di be distance labels in one iteration, d′i in the next iteration.
Let f be the flow in one iteration, f ′ in the next iteration.

To begin, we claim that the di is a valid distance labeling for the flow in the next
iteration; that is, di ≤ dj + 1 for all (i, j) ∈ Af ′ . Why? How does some arc come to exist
in Gf ′? Only two cases can cause this to happen:

9-2

• (i, j) ∈ Af . In this case, we have di ≤ dj + 1, by the definition of shortest paths.

• We sent flow on arc (j, i). In this case, we have (j, i) ∈ Af and dj = di + 1. This
implies di = dj − 1 ≤ dj + 1.

Thus the claim holds.
We want to show that d′s > ds. Look at any s-t path P in Af ′ . By the properties of a

blocking flow, there exists an arc (i, j) ∈ P that was not admissible in the previous iteration;
(i, j) /∈ Ã. In other words, either (i, j) /∈ Af , or di 6= dj + 1. In the former case, we must
have had flow sent on (j, i) in the previous iteration, which as above implies that di < dj .
The latter case implies that di ≤ dj since di ≤ dj + 1. Since di is a distance labelling for
the arcs in Af ′ , this implies that |P | > ds, which implies that d′s > ds. The reason for this
can also be seen in Figure 2. Recall our definition of a distance level Dk = {i ∈ V : di = k}.
After one iteration, any path you take will have to use an arc that stays at the same distance

�
�
�
�

�
�
�

�
�
�s t

D D12
Figure 2: s-t paths with respect to distances di before and after a blocking flow.

level or goes backwards with respect to the distances di; this implies that the distance from
the source to the sink must be larger than ds. 2

1.2 Unit capacity graphs

In some cases, we can show that blocking flow algorithms give a much better result. We
consider the special case of unit capacity graphs.

Definition 3 A unit capacity graph has uij ∈ {0, 1} for all arcs (i, j) ∈ A.

In this case, we can give the following result.

Lemma 4 If graph is unit capacity, then Dinic’s algorithm takes O(min(m
1
2 , n

2
3)) itera-

tions.

Proof: We define distance level k as Dk = i ∈ V : di = k, and of s-t cuts Sk = {i : di ≥
k}; note that for k > 0, s ∈ Sk and t /∈ Sk.

Suppose first that ds ≥ m
1
2 . Then there exists a distance level Dk such that there are at

most m
1
2 arcs in Sk. As can be seen in Figure 3, arcs from Dk to Dk−1 are disjoint for all

9-3

�
�
�

�
�
�

�
�
�
� t

D1D2

s

S cut

DDD
k k −1m1/2

Figure 3: suppose ds ≥ m
1
2

available distance levels and there are at most m arcs. This implies that if there are at least
m

1
2 distance levels, then there exists a Dk such that there are at most m

1
2 arcs from Dk to

Dk−1. Therefore, the residual capacity of the cut Sk is at most m
1
2 since the graph is unit

capacity (that is, uf (δ+(Sk)) ≤ m
1
2). Thus we know that only m

1
2 more augmentations will

be required until the algorithm finds a maximum flow. The algorithm takes
√

m iterations
until the distance from the source is ds ≥ m

1
2 , and

√
m more iterations until the flow is

maximum, for a total of O(
√

m) iterations.
Let us now suppose that ds ≥ 2n

2
3 . Then, there exists Dk, Dk−1 such that |Dk| ≤ n

1
3

and |Dk−1| ≤ n
1
3 . To see this, if more than n

2
3 levels have more than n

1
3 nodes, we then

have more than n nodes in total and contradiction exists. Thus it must be that less than
n

2
3 levels have more than n

1
3 nodes. This implies at least 2 consecutive levels have less than

or equal to n
1
3 nodes, as shown in Figure 4.

�
�
�

�
�
�

�
�
�
� t
s

S cut

<= n
1/3

D k Dk−1
D 2 D1

<= n
1/3

Figure 4: suppose ds ≥ 2n
2
3

If we now consider all possible arcs from Dk to Dk−1 (as in Figure 4), there can be
at most n

2
3 arcs. Thus the residual capacity of the cut Sk is uf (δ+(Sk)) ≤ n

2
3 , since all

arcs have unit capacity. This proves that only n
2
3 more iterations are needed to find the

maximum flow. Thus as in the previous case, after 2n
2
3 iterations, ds ≥ 2n

2
3 and after n

2
3

iterations, the maximum flow is achieved, for a total of O(n
2
3) iterations. 2

9-4

We claim that in unit capacity graphs, it is easy to find a blocking flow.

Claim 5 We can find a blocking flow in unit capacity graph in O(m) time.

This follows since in every s-t path we found can saturate all arcs in the path due to unit
capacity, and remove them from further consideration.

Because the quantities in the proof above will come up so frequently in following lectures,
let’s set aside a special symbol for them.

Definition 4
Λ = min(m

1
2 , 2n

2
3).

Thus combining the above, we obtain the following.

Theorem 6 In unit capacity graphs, the maximum flow can be found in O(Λm) time.

1.3 The Goldberg-Rao algorithm

Now will consider how to apply the ideas of this algorithm to graphs with general capacities
(Goldberg, Rao 1998). It takes O(Λ(m log n)(log mU)) operations, where U represent the
largest capacity of all edges. We know after Λ blocking flows operations, there exists a cut
in the residual graph of capacity at most ΛU , by the same arguments as we used for the

Suppose we can somehow make sure that the arcs from Dk to Dk−1 have residual capacity
at most ∆. Then we know that after Λ iterations, we know (by the proof above) that the
remaining residual capacity is Λ∆. This somehow seems useful. How can we obtain such
a property? The basic idea we will consider is that of altering the distance function. Up
until now, the distance of a vertex to the sink has been the number of arcs on the shortest
path. But of course we could have general lengths on the arcs. If we change the length of
each arc to be the following:

lij ←
{

1 if uf
ij < ∆

0 otherwise

then we will get the property that we want, namely, the arcs from Dk to Dk−1 will have
residual capacity at most ∆. In the next lecture we will see how this idea plays out.

9-5

