
ORIE 633 Network Flows October 25, 2007

Lecture 15

Lecturer: David P. Williamson Scribe: Yu Tung Cheng

1 Polynomial time algorithms for minimum-cost circulations

1.1 Cost scaling (cont.)

Recall the following algorithm and theorems from the last lecture:

Cost Scaling (Goldberg, Tarjan ’90)

Let f be any feasible arc
ε ← C
pi ← 0,∀i ∈ V
While ε ≥ 1/n

ε ← ε/2
(f, p) ← find-ε-opt-circ(f, ε, p)

Push/relabel find-ε-opt-circ(f, ε, p)

∀(i, j) ∈ Af if cp
ij < 0, fij ← uij

While ∃ active i ∈ V (ef
i > 0)

If ∃j s.t. uf
ij > 0 and cp

ij < 0
Push δ = min(ef

i , uf
ij) flow on (i, j)

Else
Relabel pi ← max

(i,j)∈Af

(pj − cij − ε)

Return (f, p)

Last time, we showed the following.

Theorem 1 Cost scaling takes O(min(log(nC),m log n)) iterations.

The find-ε-opt-circ(f, ε, p) subroutine does the following:

find-ε-opt-circ

• Input: 2ε-opt circulation f , potentials p s.t. cp
ij ≥ −2ε, ∀(i, j) ∈ Af

• Goal: ε-opt circulation f ′, potentials p′ s.t. cp
ij ≥ −ε, ∀(i, j) ∈ Af ′

Last time we described the push/relabel algorithm given above to implement this sub-
routine. It works by first creating an ε-optimal pseudoflow, then gradually changes this

15-1

to a circulation while maintaining ε-optimality. Recall that a pseudoflow is obeys capacity
constraints and antisymmetry, but not necessarily flow conservation.

We left the following lemma unproved last time; this time we will finish its proof.

Lemma 2 For any i, pi decreases by at most 3nε during the algorithm.

From this lemma, we derived the following statements about the running time of the
algorithm.

Lemma 3 The total number of relabels is ≤ 3n2.

Lemma 4 The number of saturating pushes in the above algorithm is at most O(nm).

Lemma 5 The number of non-saturating pushes in the algorithm is O(n2m).

Theorem 6 The Push/Relabel find-ε-opt-circ subroutine takes O(n2m) time. Further-
more, with a FIFO implementation of Push/Relabel, the subroutine runs in O(n3) time.
With the use of fancy data structures, it runs in O(mn log(n2/m)) time.

Corollary 7 The cost scaling algorithm runs in O(mn log(n2/m) min(log(nC),m log n))
time.

Now we proceed to the proof of Lemma 2. We first need the following.

Lemma 8 Let f be a pseudoflow, f ′ a circulation. For any i such that ef
i > 0, there exists

j such that ef
j < 0 and there exists a path P from i to j with (k, l) ∈ Af , (l, k) ∈ Af ′ for all

(k, l) ∈ P .

Proof: Claim: It is possible to find P in set of arcs

A< = {(i, j) : fij < f ′ij}

Note A< ⊆ Af since fij < f ′ij implies fij < uij . Further note that if (i, j) ∈ A<, then
(j, i) ∈ Af ′ since then f ′ji < fji ≤ uji. Thus given a vertex i such that ef

i > 0, it will be
sufficient to find a path in A< to some j such that ef

j < 0.
To do this, let S be all vertices reachable from i using arcs in A<. Then,

−
∑

k∈S

ef
k =

∑

k∈S

∑

j:(k,j)∈A

fkj

=
∑

k∈S,j 6∈S,(k,j)∈A

fkj

≥
∑

k∈S,j 6∈S,(k,j)∈A

f ′kj = 0.

The inequality holds because each (k, j) in the sum is not in A<. The last equality holds
because f ′ is a circulation.

15-2

Since ef
i > 0, then there must be j ∈ S such that ef

j < 0. Furthermore, j is reachable
from i using arcs of A<. 2

Now we can prove Lemma 2.
Proof of Lemma 2: Let f ′ be the initial 2ε-optimal circulation, and p′ initial potentials.
We consider the last point in the algorithm during which pi is relabelled. Note that if pi is
relabelled, then ef

i > 0. By the previous lemma, we know there is j ∈ V such that ef
j < 0

and there is a path P from i to j in Af , with the reverse of the path in Af ′ .
First, observe that f being ε-optimal implies

−|P |ε ≤
∑

(k,l)∈P

cp
kl =

∑

(k,l)∈P

(ckl + pk − pl) =


 ∑

(k,l)∈P

ckl


 + pi − pj

Next, observe that since f ′ is 2ε-optimal and the reverse of P from j to i is in Af ′ implies
that

−2ε|P | ≤
∑

(k,l)∈P

cp′
lk =

∑

(k,l)∈P

clk + p′j − p′i

Finally, observe that by our definition of costs
∑

(k,l)∈P ckl = −∑
(k,l)∈P clk. Thus by

adding the previous inequalities, we get

−3ε|P | ≤ (pi − p′i) + (p′j − pj).

Because ef
j < 0, the node j must not have been relabelled to this point in the algorithm,

and thus pj = p′j . Therefore we have that

pi − p′i ≥ −3nε.

Since we assumed that this was the last point in the algorithm during which i was relabelled,
the lemma statement follows. 2

We close our performance analysis of the cost-scaling algorithm with two open ques-
tions. First, is a minimum-cost circulation problem solvable with O(min(m log n, log(nC)))
iterations of any maximum flow algorithm? It looked like the push/relabel algorithm could
be used as the find-ε-opt-circ subroutine with only minor modifications; this is also the case
for the blocking flow variant of this subroutine.

More to the point, can the Goldberg-Rao maximum flow algorithm be used for this
subroutine? This would then give us a minimum-cost circulation algorithm that runs in
O(Λm log n(log(mU))(log(nC))) time, which would be the fastest known algorithm.

1.2 Capacity scaling

We consider one last algorithm for the minimum-cost circulation problem. So far we’ve con-
sidered algorithms that have used ε-optimality to measure their progress toward optimality.
Today we’ll start looking at an algorithm that maintains 0-optimality but has a pseudoflow
and works towards primal feasibility.

15-3

To make the algorithm work, we need to ensure that we can push any amount of flow
from any node to any other node. To do this, we can add arcs to the graph of infinite
capacity but very high cost, high enough that any optimal flow would never use them.

We want to maintain a pseudoflow with potentials p, and a parameter ∆ (= U initially),
where

Af (∆) = {(i, j) ∈ Af : uf
ij ≥ ∆}

S(∆) = {i ∈ V : ef
i ≥ ∆}

T (∆) = {i ∈ V : ef
i ≤ −∆}

The idea is to enforce cp
ij ≥ 0 for all (i, j) ∈ Af (∆). Then we repeatedly move ∆ units of

flow from S(∆) to T (∆) until either S(∆) = ∅ or T (∆) = ∅ (which will imply that there is
not too much excess left). Then divide ∆ by 2 and repeat.

We claim that the algorithm will do what we want.

Claim 9 When ∆ < 1, f is a feasible circulation and it is optimal.

Proof: First we show that the circulation is feasible. At the end of iteration, ∆ < 1.
This means {i : ei ≥ 1} = ∅ or {i : ei ≤ −1} = ∅. Since

∑
ei = 0, by the integrality of flow,

this implies that ei = 0 for all i ∈ V . Hence f is feasible.
The circulation is optimal since cp

ij ≥ 0 for all (i, j) ∈ Af (∆), and when ∆ < 1,
Af (∆) = Af . By the optimality conditions for circulations we showed some time ago, this
implies optimality. 2

At the beginning of an iteration, if cp
ij < 0 and (i, j) ∈ Af (∆), we saturate edge (i, j).

Then we will have a pseudoflow such that cp
ij ≥ 0 for all (i, j) ∈ Af (∆) initially. How do we

maintain this as we push flow on paths in Af (∆)? It’s a bit tricky since if we push flow on
any edge (i, j) such that cp

ij > 0, then the arc (j, i) will enter the residual graph and have
cp
ji < 0. To resolve this, we’d like to push flow on arcs (i, j) such that cp

ij = 0. We’ll see
how we can accomplish this in the next lecture.

15-4

