
ORIE 633 Network Flows October 23, 2007

Lecture 14

Lecturer: David P. Williamson Scribe: Abhimanyu Mitra

1 Algorithms for minimum-cost circulations

1.1 A cost-scaling algorithm

We now turn to an algorithm for the minimum-cost circulation problem.

Cost Scaling (Goldberg, Tarjan ’90)

Let f be any feasible circulation
Initialize ε ← C, pi ← 0 ∀i ∈ V
while ε ≥ 1

n
(?)
ε ← ε

2
(f, p) ← Run Subroutine: find ε-optimal circulation given input (f, ε, p)
Find potentials p such that f is ε(f) optimal.

The idea is that given a 2ε-optimal circulation f with respect to potentials p, the sub-
routine will find an ε-optimal circulation f ′ with respect to potentials p′. Since the initial
circulation is C-optimal and the final circulation is < 1

n -optimal (and hence optimal by a
lemma in a previous lecture), we will need at most log(nC) iterations of the while loop.

We can also show that the number of iterations is strongly polynomial by tweaking one
of our previous theorems. Recall the following definition and result.

Definition 1 An arc (i, j) is ε-fixed if the flow on (i, j) is the same for all ε-optimal
circulations.

Theorem 1 For ε > 0 and circulation f with respect to potentials p, if |cp
ij | ≥ 2nε, then

(i, j) is ε-fixed.

We then have the following theorem:

Theorem 2 For circulation f and ε′ < ε(f)
2n , the set of ε′-fixed arcs strictly contains the set

of ε(f)-fixed arcs.

Proof: Clearly if an arc is ε′-fixed, then it is also ε(f)-fixed. We now want to show
that there exists an arc that is ε′-fixed, but not ε(f)-fixed. Let p be the potentials such
that f is ε(f)-optimal. Then there exists a cycle Γ ∈ Af such that −ε(f) = cp(Γ)

|Γ| by
a previous theorem. We also know that cp

ij ≥ −ε(f)∀(i, j) ∈ Af by definition. Hence
cp
ij = −ε(f)∀(i, j) ∈ Γ.
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If we cancel cycle Γ, the resulting circulation, f̂ , is still ε-optimal. Thus no arc in Γ
is ε-fixed. Now let f ′ be any ε′-optimal circulation with respect to potentials p′. Then

−ε(f) = cp′ (Γ)
|Γ| < −2nε′ and thus ∃(i, j) ∈ Γ such that cp′

ij ≤ −2nε′. Therefore (i, j) is
ε′-fixed but not ε(f)-fixed. 2

We now want to claim the following corollary.

Corollary 3 Every log(2n) iterations of the while loop, a new arc is fixed.

But note that the lemma states that ε′ must be a factor of 2n less than ε(f), not just
any ε such that f is ε-optimal. In order to make this true, at step (?) in the Cost Scaling
algorithm, we must add a subroutine to find potentials p such that f is ε(f)-optimal and
then set ε ← ε(f). This will only decrease ε as the procedure continues. Then we can claim
the corollary above.

Since we can fix at most m arcs, we have the following theorem.

Theorem 4 After min(m log(2n), log(nC)) iterations, Cost Scaling finds a min-cost circu-
lation.

Now, we’ll give an algorithm for the subroutine find-ε-opt-circ(f, ε, p) based on the ideas
from the push/relabel algorithm that we saw for the maximum flow problem.

find-ε-opt-circ

• Input: 2ε-opt circulation f , potentials p s.t. cp
ij ≥ −2ε, ∀(i, j) ∈ Af

• Goal: 2ε-opt circulation f ′, potentials p′ s.t. cp′
ij ≥ −ε,∀(i, j) ∈ Af ′

The basic idea of the algorithm is that we will first convert the 2ε-optimal circulation
to an ε-optimal pseudoflow, and then convert the ε-optimal pseudoflow to an ε-optimal
circulation.

Definition 2 A pseudoflow f : A → R satisfies the following:

• fij = −fji, for all (i, j) ∈ A

• fij ≤ uij, for all (i, j) ∈ A.

Note that a pseudoflow obeys antisymmetry and capacity constraints but not flow con-
servation.

Definition 3 For pseudoflow f , the excess at node i ∈ V is

ef
i =

∑

k:(k,i)∈A

fki
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Note that this quality may be negative. If so, then negative excess is sometimes called
a deficit.

How can we convert a 2ε-optimal circulation to an ε-optimal pseudoflow? It’s easy; we
just saturate every edge with negative cost. That is, for (i, j) ∈ A such that cp

ij < 0, set fij

to uij . Then f is a 0-optimal pseudoflow.
To use a push/relabel scheme, we need to specify the conditions needed (and actions

taken) for doing a push operation and a relabel operation. Obviously, in order to get from
a pseudoflow to a circulation, we’d like to get rid of all excesses; following the idea of the
push/relabel algorithm for maximum flow, we’ll do a push on nodes with positive excess.
Recall that in the maximum flow case, we only pushed along admissible arcs that met some
criterion with their distance label. What should be the concept of an admissible arc in this
case? Here we say an arc (i, j) ∈ Af is admissible if cp

ij < 0. Thus we push from node i

with ef
i > 0 if there exists j such that uf

ij > 0 and cp
ij < 0. As in the maximum flow case,

we will push δ = min(ef
i , uf

ij) units of flow along (i, j).
Observe that ε-optimality is maintained during a push operation on (i, j) since if (j, i)

is created in the residual graph, it will have reduced cost cp
ji = −cp

ij > 0.
What happens during a relabel operation? We need to relabel if there is excess at a node

i, but there are no admissible arcs leaving i. In this case, all arcs with residual capacity
must have non-negative reduced cost. When changing the potential of an arc, we keep two
things in mind: (1) We want to maintain ε-optimality; (2) We want there to exist an (i, j)
such that uf

ij > 0, cp
ij < 0. To create some admissible arc, we will simply alter the potential

pi at node i. In particular, we set

pi ← max
(i,j)∈Af

(pj − cij − ε).

Note that after a relabel operation at node i, we have

• cij + pi − pj ≥ −ε, ∀(i, j) ∈ Af

• cij + pi − pj = −ε for some (i, j) ∈ Af

Since previously cp
ij ≥ 0 for all (i, j) ∈ Af , it must be the case that pi is decreased by at

least ε. By the above, f maintains ε-optimality.
Putting these together, we obtain the following algorithm.

Push/relabel find-ε-opt-circ(f, ε, p)

∀(i, j) ∈ Af if cp
ij < 0, fij ← uij

While ∃ active i ∈ V (ef
i > 0)

If ∃j s.t. uf
ij > 0 and cp

ij < 0
Push δ = min(ef

i , uf
ij) flow on (i, j)

Else
Relabel pi ← max

(i,j)∈Af

(pj − cij − ε)

Return (f, p)
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We now want to show that the algorithm is correct and bound its running time. We’ll
state the following lemma and return later to its proof.

Lemma 5 For any i, pi decreases by at most 3nε during the algorithm.

For now, let us draw out the implications of the lemma for the running time of the
algorithm. We can now give the following corollary.

Corollary 6 The total number of relabels is at most 3n2.

Proof: Since pi decreases by at least ε in each relabel operation, there can be at most
3n relabels of i. This implies that there are at most 3n2 relabel operations in total. 2

Recall that a push operation is said to be saturating if δ = uf
ij , or non-saturating

otherwise (in which case δ = ef
i ). As in the case of the push/relabel algorithm for the

maximum flow problem, we now bound the number of push operations by considering the
two types of pushes separately.

Lemma 7 The number of saturating pushes in the above algorithm is at most 3nm.

Proof: Pick any arc (i, j). Initially, cp
ij ≥ 0 if uf

ij > 0. Therefore, we have to relabel
i before we can push on (i, j), since for (i, j) to be admissible, we need cp

ij < 0. Having
had a saturating push on (i, j), in order to push flow on it again, we must first push flow
back on (j, i), which implies cp

ji < 0, which in turn implies cp
ij ≥ 0. Therefore, we need to

relabel i once more to push flow on (i, j) again. This leads directly to a bound of at most
3n saturating pushes on (i, j). Thus for all m arcs in the graph, there can be at most 3nm
saturating pushes. 2

Now we wish to find an upper bound for the total number of non-saturating pushes in
this algorithm. We need the following lemma to help us with this bound.

Lemma 8 The set of admissible arcs is acyclic.

Proof: We prove this lemma by induction on the algorithm. The base case of the
algorithm is simple since initially no admissible arcs exist. Now suppose that the claim
holds in the middle of the algorithm. Each time a push is executed, it can only remove
admissible arcs from the residual graph, but cannot add them, so the claim holds. Each
time a relabel is executed, it adds admissible outgoing arcs of vertex i, but removes all of i’s
admissible incoming arcs because all of the reduced costs of the arcs entering i are increased
by at least ε. Since every arc entering i had reduced cost at least −ε, after the relabel, all
arcs entering i have nonnegative reduced cost, and so are not admissible. Thus no cycles
can be created by the new admissible arcs coming out of vertex i. 2

Now we can bound the number of non-saturating pushes.

Lemma 9 The number of non-saturating pushes in the algorithm is O(n2m).

Proof: Define Φi to be the number of vertices reachable from i via the admissible arcs,
and let Φ =

∑
i:ei>0 Φi. Initially Φ ≤ n (since every vertex can reach only itself); when the

algorithm terminates, Φ = 0, since there are no active vertices i.
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What makes Φ increase? A saturating push on the arc (i, j) could result in a new active
node j, and therefore Φ can increase by at most n. In addition, a relabel can increase Φi

by at most n, but for a vertex j such that j 6= i, the relabel does not increase Φj , since
all arcs entering i are no longer admissible. So, the amount that Φ increases is at most
n

(
3nm + 3n2

)
.

What then makes Φ decrease? From the algorithm above, we see that a non-saturating
push decreases Φ by at least 1: after such a push, i has turned inactive, and even if some
other vertex j became active as a result of the non-saturating push, it would still reach
fewer vertices than i by the acyclicity of the admissible arcs.

So, the total number of non–saturating pushes in this algorithm is at most n
(
3nm + 3n2

)
+

n = 3n2m + 3n3 + n = O
(
n2m

)
. 2

From the above lemmas, we see that the total number of push/relabel operations of the
algorithm is at most O(n2m). Given an implementation with O(1) time per operation (which
we will not discuss), we may obtain the overall computational time of the Push/Relabel find-
ε-opt-circ subroutine:

Theorem 10 The Push/Relabel find-ε-opt-circ subroutine takes O(n2m) time. Further-
more, with a FIFO implementation of Push/Relabel, the subroutine runs in O(n3) time.

Combining this with the bound on the number of iterations of the cost-scaling algorithm,
we obtain the following.

Theorem 11 (Goldberg, Tarjan ’90) The cost-scaling algorithm for the minimum-cost cir-
culation problem can be implemented in O(n3 min(log(nC),m log n)) time.

Note that if we replace Push/Relabel find-ε-opt-circ with a subroutine based on blocking
flows, the cost-scaling algorithm can be shown to run in O(mn log n ·min (m log n, log(nC)))
time.
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