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Recall from the previous lecture the following definitions and algorithm:

Definition 1 The mean cost of cycle Γ is
c(Γ)
|Γ| =

cp(Γ)
|Γ| .

Definition 2 For a circulation f ,

µ(f) = min
cycles Γ in Gf

c(Γ)
|Γ| .

Min mean-cost cycle cancelling (Goldberg, Tarjan ’89)

Let f be any feasible circulation
While µ(f) < 0

Find a min mean-cost cycle Γ
Cancel Γ; update f

In order to analyze this algorithm, we introduced the notion of ε-optimality:

Definition 3 A circulation f is ε-optimal if there exist potentials p such that cp
ij ≥ −ε for

all (i, j) ∈ Af .

Theorem 1 A 0-optimal circulation is optimal.

Definition 4 Let ε(f) be the minimum ε such that f is ε-optimal.

Let f (k) denote the circulation obtained by the algorithm after k iterations. The follow-
ing theorems were proven in the previous lecture.

Theorem 2 ε(f (1)) ≤ ε(f).

Theorem 3 ε(f (m)) ≤
(

1− 1
n

)
ε(f).

Theorem 4 If ε(f) < 1
n , then f is optimal.

Theorem 5 Any circulation is C-optimal, where C = max |cij |.

Theorem 6 O(mn log(nC)) iterations of the algorithm result in an optimal circulation;
hence the given algorithm runs in O(m2n2 log(nC)) time.
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1 Strongly polynomial-time analysis of the min mean-cost
cycle cancelling algorithm

In this lecture, we present a strongly polynomial running time analysis of the min mean-cost
cycle cancelling algorithm described above. This analysis is based on Professor Éva Tardos’s
algorithm and analysis, with modifications to fit the given algorithm. It was a significant
progress to answer the question whether we can have a strongly polynomial-time algorithm
to solve this class of linear programs; she was awarded Fulkerson prize for this work.

Definition 5 An arc (i, j) is ε-fixed if the flow on it is the same for all ε-optimal circula-
tions.

Intuitively, we will show that the arcs are ‘fixed’ one by one throughout the execution of
the algorithm, and that the arcs, once fixed, remain fixed until the termination. We use the
revised definition of a circulation given in the previous lecture that introduces antisymmetry.

Lemma 7 For any circulation f and any S ( V (S 6= ∅),
∑

k∈S
l/∈S

(k,l)∈A

fkl = 0.

Proof: By flow conservation,
∑

l:(k,l)∈A fkl = 0 for any k. Summing over S,

∑

k∈S

∑

l:(k,l)∈A

fkl = 0.

Since fkl + flk = 0, all the terms in the left-hand side with k, l ∈ S cancel out; thus,
∑

k∈S
l/∈S

(k,l)∈A

fkl = 0.

2

The following theorem shows a condition for an arc to be ε-fixed.

Theorem 8 For ε > 0, let f be a circulation and p be potentials such that f is ε-optimal
with respect to p. If |cp

ij | ≥ 2nε, then (i, j) is ε-fixed.

Proof: Proof by contradiction. Let f ′ be an ε-optimal circulation such that f ′ij 6= fij .
Assume that cp

ij ≤ −2nε; this assumption is without loss of generality since the costs are
antisymmetric. Then we claim:

Claim 9 There exists a cycle Γ in Af ′ containing (i, j).
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Proof: Since cp
ij ≤ −2nε and f is ε-optimal with respect to p, (i, j) /∈ Af . Hence

fij = uij and f ′ij < fij .
Let E< = {(k, l) ∈ A : f ′kl < fkl}. Then E< ⊆ Af ′ , since f ′kl < fkl ≤ ukl. Thus if we

find a cycle Γ in E<, then Γ is in Af ′ .
Let S be the set of the nodes reachable from j in E<. We will show that i ∈ S; this will

imply that there exists a cycle Γ including (i, j).
Suppose i /∈ S. We know ∑

k∈S
l/∈S

(k,l)∈A

(
fkl − f ′kl

)
= 0

from Lemma 7; f ′ij < fij yields fji−f ′ji < 0; hence, there exists (k, l) such that k ∈ S, l /∈ S
and fkl− f ′kl > 0 (see Figure 1). However, fkl− f ′kl > 0 implies (k, l) ∈ E< and hence l ∈ S,
leading to contradiction.

S

k l

> 0t - t

j i< 0t - t

Figure 1: fji − f ′ji < 0 =⇒ ∃(k, l) ∈ δ+(S) fkl − f ′kl > 0.

(A quick alternative proof by Yogi: observe that f − f ′ is a circulation and fij − f ′ij > 0.
Since every circulation can be decomposed into at most m cycles as shown in the problem
set, there exists a cycle Γ that has (i, j) ∈ Γ in E<.) 2

Now back to the proof of Theorem 8. We know that there exists a cycle Γ ⊆ Af ′ with
(i, j) ∈ Γ. Both proofs further show that Γ ⊆ E<.

For all (k, l) ∈ Γ, flk < f ′lk ≤ ulk since Γ ⊆ E< and f is antisymmetric; hence, (l, k) ∈ Af .
Therefore cp

lk ≥ −ε, yielding cp
kl ≤ ε. Thus,

µ(f ′) =
c(Γ)
|Γ| =

cp(Γ)
|Γ| =

1
|Γ|


cp

ij +
∑

(k,l)∈Γ
(k,l)6=(i,j)

cp
kl




≤ 1
|Γ|(−2nε + (|Γ| − 1)ε)

< −ε. (1)
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We already know ε ≥ ε(f ′) = −µ(f ′), which contradicts (1).
Therefore, the flow on (i, j) is fixed. 2

Now we are ready to analyze the running time.

Theorem 10 The min mean-cost cycle cancelling algorithm terminates after O(m2n log n)
iterations.

Proof: Once an arc is fixed, it remains fixed for the rest of the algorithm since ε(f) is
non-increasing. The following claim completes the proof. 2

Claim 11 A new arc is fixed after k = mn log(2n) iterations.

Proof: Let f be the current circulation and Γ be the cycle cancelled in this iteration.
By Theorem 3,

ε(f (k)) ≤
(

1− 1
n

)n log(2n)

ε(f) <
ε(f)
2n

.

Let pk be the node potentials for circulation f (k) such that f (k) is ε(f (k))-optimal. Then

cpk
(Γ)
|Γ| = µ(f) = −ε(f) < −2nε(f (k));

hence, there exists (i, j) ∈ Γ such that cpk

ij < −2nε(f (k)). Therefore, (i, j) is ε(f (k))-fixed.
Note that (i, j) was not ε(f)-fixed because (i, j) ∈ Γ and the flow on it was changed

when we canceled Γ. 2

In the next lecture, we will present another type of algorithm for the min-cost circulation
problem that is more efficient.
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