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1 Minimum-cost circulations

Recall the minimum-cost circulation problem, introduced in the previous lecture:

Minimum-cost circulation problem

• Input:

– A directed graph G = (V, A).

– Integer costs cij ∈ Z, ∀(i, j) ∈ A.

– Integer capacities uij ≥ 0, ∀(i, j) ∈ A.

– Integer demands 0 ≤ lij ≤ uij , ∀(i, j) ∈ A.

• Goal: Find a minimum-cost circulation.

The goal is to find a flow f : A → R≥0 that minimizes
∑

(i,j)∈A cijfij such that

lij ≤ fij ≤ uij , ∀(i, j) ∈ A∑
k:(i,k)∈A fik −

∑
k:(k,i)∈A fki = 0, ∀i ∈ V

In the previous lecture, we defined a notation change for circulations similar to the one we
defined for s-t flows.

Definition 1 A circulation f satisfies the following:

1. fij ≤ uij ∀ (i, j) ∈ A

2. fij = −fji, ∀ (i, j) ∈ A

3.
∑

k:(k,i)∈A fki = 0

In the new definition, flow in the original arc fij satisfies the constraints fij ≤ uij , and
each unit of flow incurs cost cij . Flow on the reverse arc fji satisfies fji ≤ uji = −lij and
incurs cost cji = −cij per unit of flow. The total cost for the two edges with flow f is
cjifji + cijfij = 2cijfij . Hence optimizing the total cost for this new graph is the same as
optimizing the total cost for the original graph.

Given a flow f on G, last time we defined the residual graph to be Gf = (V, Af ) where
the new arc set

Af := {(i, j) ∈ A : fij < uij}.
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Note that we are using the new notation here. Impose the upper bound uf
ij = uij − fij for

arc (i, j) ∈ Af . Then clearly uf
ij > 0 for all (i, j) ∈ Af .

We also defined node potentials.

Definition 2 A potential is a function p : V → R.

Definition 3 Given a potential p, define the reduced cost cp
ij := cij + pi − pj. Then

cp
ji = cji + pj − pi = −(cij + pi − pj) = −cp

ij.

The node potentials play the role of dual variables.

Definition 4 The cost of a cycle Γ is c(Γ) =
∑

(i,j)∈Γ cij.

We proved the following theorem (optimality conditions) in the last lecture:

Theorem 1 The following are equivalent:

1. f is a minimal cost circulation,

2. There are no negative cost cycles in Gf , and,

3. There exists a potential p such that cp
ij ≥ 0 for all (i, j) ∈ Af .

2 A cycle-cancelling algorithm

The theorem above leads to a natural algorithm for computing a min-cost circulation:

Cycle-Cancelling Algorithm (Klein ’67)

Let f be a feasible circulation.
While Af contains a negative cycle Γ

Cancel Γ, update f .

The correctness of the algorithm follows immediately from the above theorem. If costs
and capacities are both integral, then there exists an optimal flow f such that fij integer
for all (i, j) ∈ A. Suppose

U = max
(i,j)∈A

uij C = max
(i,j)∈A

|cij |.

Then any feasible circulation costs at most mCU and at least −mCU . Since a cycle
cancellation improves the cost of a circulation by at least 1, at most O(mCU) cancellations
are needed in order to find an optimal circulation.

We need two more things to conclude that the above algorithm is pseudo-polynomial:

1. We need to be able to find an initial circulation: For this, recall from Problem Set 1
that this can be done in one max flow calculation.

2. We need to be able to check the existence of a negative-cost cycle: For this, recall from
Problem Set 2 that the this can be done via the Bellman-Ford algorithm in O(mn)
time. So we have a pseudo-polynomial time algorithm that runs in O(m2nCU) time.
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3 Minimum mean-cost cycle cancelling

As with the augmenting path algorithm for the maximum flow problem, we can obtain a
polynomial-time algorithm by a better choice of which cycle to cancel at each iteration.
Consider the following.

Definition 5 Let the mean cost of a cycle Γ be c(Γ)
|Γ| where c(Γ) is the cost of the cycle and

|Γ| is the number of arcs in Γ.

Definition 6 Given a circulation f , let µ(f) be the cost of the minimum mean-cost cycle
in Gf :

µ(f) = min
cycles Γ⊆Af

c(Γ)
|Γ|

It turns out we can get a polynomial-time algorithm by cancelling the minimum mean-
cost cycle. We can now give the following algorithm:

Minimum mean-cost cycle cancelling algorithm (Goldberg-Tarjan ’89)

Let f be any circulation
While µ(f) < 0

Cancel min-mean cycle Γ, update f

Observe that the condition µ(f) < 0 is equivalent to having a negative-cost cycle in Af .
To have a polynomial-time algorithm, we need to be able to find the minimum mean-cost
cycle in polynomial-time. In Problem Set 3, we will show that one can compute µ(f) and
find the corresponding cycle in O(mn) time.

To begin our analysis, we need to introduce a few terms.

Definition 7 A circulation f is ε-optimal if there exist potentials p s.t. cp
ij ≥ −ε for all

(i, j) ∈ Af .

Clearly f is 0-optimal if and only if f is a min-cost circulation by the third equivalence
in Theorem 1. For any circulation, f is C−optimal, since if we assign pi = 0 for all i ∈ V ,
cp
ij ≥ −C for all (i, j) ∈ Af .

Definition 8 Define ε(f) to be the minimum ε such that f is ε-optimal.

Interestingly, the two values of ε(f) and µ(f) are closely related.

Theorem 2 For a circulation f , µ(f) = −ε(f).

Proof: We first show that µ(f) ≥ −ε(f). Since ∃ p s.t. cp
ij ≥ −ε(f) for all (i, j) ∈ Af ,

by summing over all arcs in any cycle Γ we obtain that cp(Γ) ≥ −ε(f)|Γ|. Thus

µ(f) =
c(Γ)
|Γ| =

cp(Γ)
|Γ| ≥ −ε(f).

for a minimum mean-cost cycle Γ.
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We now show that µ(f) ≤ −ε(f). Set cij= cij − µ(f). Then for any cycle Γ in Af :

c(Γ) = c(Γ)− |Γ|µ(f) ≥ c(Γ)− |Γ|c(Γ)
|Γ| = 0.

We introduce a source vertex s, connected to all vertices i with arcs of cost csi = 0,
and define the potential pi of node i to be the length of shortest path from s to i using
costs cij . Note that this notion is well-defined, since by the previous argument, there are
no negative-cost cycles with respect to costs cij . By the definition of shortest path, for all
(i, j) ∈ Af , pj ≤ pi + cij = pi + cij − µ(f) which implies cp

ij = cij + pi − pj ≥ µ(f) for all
(i, j) ∈ Af . This means f is −µ(f)-optimal which implies that ε(f) ≤ −µ(f). 2

Given circulation f , let f (k) denote the circulation we get after k iterations of cancelling
minimum mean-cost cycles in f . The following theorems, which we will prove later, will
show that the Goldberg-Tarjan algorithm runs in polynomial time.

Theorem 3 ε(f (1)) ≤ ε(f).

Theorem 4 ε(f (m)) ≤ (1− 1/n)ε(f).

where m,n are the number of arcs and nodes in the graph, respectively.
We will also need the following.

Theorem 5 When ε(f) < 1/n then circulation f is optimal.

Proof: The fact that ε(f) < 1/n implies that there exist a potential p such that
cp
ij > −1/n for all (i, j) ∈ Af . Thus for all cycles Γ ∈ Af , c(Γ) = cp(Γ) > −1. By the

integrality of costs, this gives c(Γ) ≥ 0. 2

We shall now prove using the previous three results that the Goldberg-Tarjan algorithm
terminates in time bounded by a polynomial in the input size.

Theorem 6 (Goldberg-Tarjan ’89) The Goldberg-Tarjan minimum mean-cost cycle can-
celling algorithm requires at most O(mn log(nC)) iterations.

Proof: Any initial circulation is C-optimal. After k = mn log(nC) iterations, we have
that

ε(f (k)) ≤ (1− 1/n)n log(nC)C < e− log(nC)C = 1/n,

using the fact that (1−1/n)n < e−1. This proves the optimality of f (k) by Theorem 5. 2

The running of the Goldberg-Tarjan algorithm is O(m2n2 log(nC)) time as min-mean
cycle computations take O(mn) time (See Problem Set 3 regarding the latter fact). Note
that this algorithm is not strongly polynomial. A strongly polynomial algorithm will be
presented in the next lecture. For now, we return and prove Theorem 3 and Theorem 4.
Proof of Theorem 3: We know there exist potentials p such that

cp
ij ≥ −ε(f) for all (i, j) ∈ Af .

Also, µ(f) = −ε(f). For the minimum-mean cost cycle Γ, since µ(f) = cp(Γ)/|Γ|, it follows
that for all (i, j) ∈ Γ, cp

ij = −ε(f). We now claim that cp
ij ≥ −ε(f) for all (i, j) ∈ Af (1) . We

have (i, j) ∈ Af (1) if either (i, j) was in Af , or if (j, i) ∈ Γ. In the first case, cp
ij ≥ −ε(f). In
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the latter case, cp
ij = −cp

ji = ε(f) ≥ 0. In both cases, it follows that f (1) is ε(f)-optimal, so
the theorem statement follows. 2

Proof of Theorem 4: We know there exists a potential p such that cp
ij ≥ −ε(f) for all

(i, j) ∈ Af . Suppose that in some iteration k we cancel cycle Γ such that ∃(i, j) ∈ Γ with
cp
ij ≥ 0. Then:

−ε(f (k)) = µ(f (k)) =
cp(Γ)
|Γ|

≥ |Γ| − 1
|Γ| (−ε(f))

≥
(

1− 1
n

)
(−ε(f)).

Thus

ε(f (k)) ≤
(

1− 1
n

)
ε(f).

How many consecutive iterations can there be such that cp
ij < 0 for all (i, j) in the cancelled

cycle Γ ? Cancelling the cycle removes one edge with cp
ij < 0 from the residual graph and

creates only edges with cp
ij ≥ 0. So we need no more than m iterations before we cancel

such a cycle Γ. 2
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