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1 Minimum-Cost Circulations

We now turn to flow problems that include costs.

Minimum-Cost Circulation Problem

• Input:

– A directed graph G = (V, A).

– Integer costs cij , ∀(i, j) ∈ A.

– Integer capacities uij ≥ 0, ∀(i, j) ∈ A.

– Integer demands 0 ≤ lij ≤ uij , ∀(i, j) ∈ A.

• Goal: Find a circulation f that minimizes
∑

(i,j)∈A cijfij .

Definition 1 A circulation f : A → <≥0 such that

lij ≤ fij ≤ uij , ∀(i, j) ∈ A∑
k:(i,k)∈A fik −

∑
k:(k,i)∈A fki = 0, ∀i ∈ V.

A related problem is the minimum-cost flow problem.

Minimum-Cost Flow Problem

• Input:

– A directed graph G = (V, A).

– Integer costs cij , ∀(i, j) ∈ A.

– Integer capacities uij ≥ 0, ∀(i, j) ∈ A.

– Integer demands bi ∀i ∈ V , s.t.
∑

i∈V bi = 0.

• Goal: Find a flow f that minimizes
∑

(i,j)∈A cijfij s.t.

0 ≤ fij ≤ uij , ∀(i, j) ∈ A,∑
k:(k,i)∈A fki −

∑
k:(i,k)∈A fik = bi, ∀i ∈ V.
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1.1 Equivalence with min-cost flows

We will show below that the minimum-cost circulation problem and the minimum-cost flow
problem are equivalent to each other. Notice that the input for the minimum-cost flow
problem is the same as the for the minimum-cost circulation problem, except that there
are no demands lij , but instead, there are integer demands bi ∀i ∈ V , such that the sum of
demands over all the vertices is zero:

∑
i∈V bi = 0. The goal is now to find a minimum-cost

flow that satisfies demand at each of the vertices.

Theorem 1 The minimum-cost flow problem and the minimum-cost circulation problem
are equivalent.

Proof: (flow ⇒ circulation) Given an instance of the minimum-cost flow problem, we
will show how to convert it to an instance of the minimum-cost circulation problem. Then,
given an algorithm for minimum-cost circulation, we would be able to solve the minimum-
cost flow problem. To convert, add a node s to the graph. For i ∈ V such that bi > 0,
create an arc (i, s) with cost 0, and lis = uis = bi. For i ∈ V such that bi < 0, we create an
arc (s, i) of cost 0 such that lsi = usi = |bi| (See Figure 1). Note that given a feasible flow
in the original problem we can get a circulation of the same cost in the modified instance
since the flow coming into each node is equal to the flow going out of each node (including
the node s, since

∑
i:bi>0 bi =

∑
i:bi<0 |bi|). The reverse is also true – given a circulation in

the modified instance, the flow on the arcs of the original problem is a feasible flow of the
same cost. So by finding a minimum-cost circulation in the modified instance we can find
a minimum-cost flow in the original instance.

bi > 0bi <0

G

s

cis = 0c is = 0

l si = usi =−bi l is = uis = bi

Figure 1: Transformation of minimum-cost flow instance to minimum-cost circulation in-
stance.

(circulation ⇒ flow) For this part, we change variables. Set f ′ij = fij − lij , and u′ij =
uij − lij . Set bi =

∑
k:(i,k)∈A lik −

∑
k:(k,i)∈A lki. This provides a direct transformation

between the two problems. Given a feasible circulation f in the original problem, we have
a feasible flow f ′ in the modified problem of the same cost, and vice versa. Thus by finding
a minimum-cost flow in the modified instance, we can find a minimum-cost circulation in
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the original instance. 2

From here on, we will consider only the minimum-cost circulation problem and algo-
rithms to solve it.

We will now change our notation slightly for the problem, as we did for the maximum
flow problem, since it will make our algorithms and proofs simpler. Replace each arc by
two arcs of opposite orientations. If fij is the flow in (i, j), then force fji = −fij . This is
called antisymmetry. Also set uji = −lij . This removes the lower bound constraints, since
fji ≤ uji ⇒ −fij ≤ −lij ⇒ fij ≥ lij . We make the costs antisymmetric, too: cji = −cij .
Thus the total cost for the two edges with flow f is cjifji+cijfij = 2cijfij . Hence optimizing
for the total cost for this new graph is the same as optimizing for the total cost for the
original graph. Thus our definition of a feasible circulation becomes the following.

Definition 2 A circulation f : A → R such that

fij ≤ uij , ∀(i, j) ∈ A

fij = −fji, ∀(i, j) ∈ A∑
k:(i,k)∈A fik = 0, ∀i ∈ V

Claim 2 Via one max flow computation, we can tell if the circulation problem is feasible
and find a feasible circulation if one exists.

Proof: See Problem Set 1 solutions. 2

1.2 Optimality conditions

In the case of the maximum flow problem, we had conditions that told us when a flow was
optimal; i.e. we knew a flow was maximum if and only if there was no augmenting path.
We would like to give similar conditions for the minimum-cost circulation problem, but we
need a few definitions first.

Definition 3 The residual graph for a circulation f is Gf = (V, Af ) where Af = {(i, j) ∈
A : fij < uij} with residual capacity uf

ij = uij − fij.

Definition 4 Let p : V → <. Then p are called node potentials (or sometimes node
prices). The reduced cost of (i, j) ∈ A with respect to potentials p is cp

ij = cij + pi − pj. If
Γ is a cycle, let c(Γ) =

∑
(i,j)∈Γ cij.

Observe that the cost of a cycle Γ and the reduced cost of a cycle Γ is the same for any
set of potentials p; that is, c(Γ) = cp(Γ), since the potentials cancel out (see Figure 2).

Definition 5 c · f =
∑

(i,j)∈A cijfij

Theorem 3 c · f = cp · f .
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Figure 2: Example showing cost of cycle is same as the reduced cost of the cycle.

Proof:

cp · f =
∑

(i,j)∈A

(cij + pi − pj)fij

=
∑

(i,j)∈A

cijfij +
∑

(i,j)∈A

(pi − pj)fij

= c · f +
∑

(i,j)∈A

(pi − pj)fij

= c · f +
∑

i∈V

pi

( ∑

k:(i,k)∈A

fik −
∑

k:(k,i)∈A

fki

)

= c · f.

This follows since the term in parentheses is zero because of flow conservation. 2

We can now state the theorem giving us conditions under which a circulation is optimal.

Theorem 4 The following are equivalent:

1. f is a minimal cost circulation,

2. there are no negative cost cycles in Gf , and,

3. there exist potentials p such that cp
ij ≥ 0 for all (i, j) ∈ Af .

Proof:

[¬(2) ⇒ ¬(1)] Let Γ be a negative cost cycle in Af . Define

δ = min
(i,j)∈Γ

uf
ij .

Then δ > 0. Let

f ′ij =





fij + δ, (i, j) ∈ Γ,

fij − δ, (j, i) ∈ Γ,

fij , otherwise.
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Thus, f ′ij = −f ′ji and f ′ is a feasible circulation if f is. Also, f ′ij ≤ uij . Furthermore,

c · f ′ = c · f + 2δc(Γ) < c · f,

since Γ is a negative cost cycle. Therefore, f is not of minimum cost.
Note: In Gf ′ , Γ does not exist. This is so because f ′ij = uij for some (i, j) ∈ Γ. Then
(i, j) 6∈ Af ′ , and so Γ 6⊆ Af ′ . We say that Γ has been cancelled.

[(2) ⇒ (3)] Add a node s to Gf , and add arcs of cost 0 from s to each i ∈ V . Then let
pi be the length of the shortest path in the residual graph from s to i using costs cij as
the edge lengths. These paths are well defined since there are no negative-cost cycles, by
assumption. Moreover, by properties of shortest paths, for any (i, j) ∈ Af , pj ≤ pi + cij , so
that cp

ij = cij + pi − pj ≥ 0.

[(3) ⇒ (1)] Suppose f∗ is any other valid circulation. We want to show that c · f ≤ c · f∗.
Consider the circulation f ′, where f ′ij = f∗ij − fij . f ′ is a feasible circulation. Let p be a
potential such that cp

ij ≥ 0 for all (i, j) ∈ Af . Note that if f ′ij > 0 then fij < f∗ij ≤ uij . This
implies (i, j) ∈ Af and cp

ij ≥ 0. Consider the following.

c · f ′ = cp · f ′ =
∑

(i,j)∈A

cp
ijf

′
ij =

∑

(i,j)∈A,f ′ij>0

cp
ijf

′
ij +

∑

(i,j)∈A,f ′ij<0

(−cp
ji)(−f ′ji)

= 2


 ∑

(i,j)∈A,f ′ij>0

cp
ijf

′
ij


 ≥ 0.

Therefore, c · f ′ ≥ 0 ⇒ ∑
(i, j) ∈ Acij(f∗ij − fij) ≥ 0 ⇒ c · f∗ − c · f ≥ 0. Therefore f is

a min-cost circulation. 2

1.3 A cycle-cancelling algorithm

This theorem yields a natural algorithm for computing a min-cost circulation:

Cycle-Cancelling Algorithm (Klein ’67)

Let f be a feasible circulation.
While Af contains a negative cycle Γ

Cancel Γ, update f .

The correctness of the algorithm follows immediately from the above theorem. Note
that cancelling a cycle Γ means to send enough flow so that the residual capacity of some
arc goes to 0. Note that we can always find a feasible circulation, if one exists, by running
one max flow computation (see Problem Set 1, # 3). Furthermore, we can find a negative
cycle, if one exists, in O(mn) time (Problem Set 3).

Also, notice that the algorithm implies that min-cost circulations, like max-flows, sat-
isfies an integrality property: If uij and cij are integer for all (i, j) ∈ A, then if a
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feasible circulation exists, there is always integer-valued minimum-cost circulation. This
is true, since we can always cancel a cycle with integer flow during each iteration of the
cycle-cancelling algorithm.

To get a bound on the running time of the algorithm, define

U = max
(i,j)∈A

uij C = max
(i,j)∈A

|cij |.

Then any feasible circulation can cost at most mCU and must cost at least −mCU . There-
fore, since a cycle cancellation improves the cost of a circulation by at least 1, at most
O(mCU) cancellations are needed in order to find an optimal circulation.
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