1 Instructor Information

Instructor: Prof. David Williamson
Office: 236 Rhodes Hall
Office hours: Mondays 2:30-3:30, Wednesdays 11-12, and by appointment, in 236 Rhodes.
Email: dpw@cs.cornell.edu
Phone: (607) 255-4883

Teaching assistant: Chaoxu Tong
Office: 296 Rhodes Hall
Office hours: Tuesdays and Thursdays 3-4, in 424 Rhodes
Email: ct423@cornell.edu

Course web site: www.orie.cornell.edu/~dpw/orie6300/
Course discussion site: piazza.com/cornell/fall2014/orie6300/home

2 Lectures

Lectures will be Tuesday/Thursday 1:25-2:40PM in Hollister 320. Recitation section will be Wednesdays 3:30-4:30PM in Hollister 320.

3 Prerequisites

You should know multivariate calculus and elementary linear algebra.

4 Textbooks

There is no required textbook. Because there is no required text, we will use a system to which I was subjected to in graduate school and which worked reasonably well. Each week an official “scribe” will be appointed to take notes for that day’s class. The scribe will then get to me a clearly written version of the notes (preferably in \LaTeX) by within six days, so that I can hand out copies of these notes within a week. Producing scribe notes will be a requirement of the course. In almost all cases, scribing will not require much more than editing a version of the notes from a prior semester.

Pointers to lecture notes from previous semesters will be available on the course webpage.

I will also be occasionally drawing on the following book, which is on reserve at Olin Library:

1-1
5 Requirements

There will be weekly problem sets, a takehome midterm, and an inclass final exam.

The breakdown of grading is as follows: problem sets (40%), midterm (20%), final (30%),
scribing for 1-2 lectures (5%), lecture-recitation participation and filling out course evaluation form (5%).

6 Collaboration

Cornell’s Code of Academic Integrity can be found at cuinfo.cornell.edu/Academic/AIC.html.

Your work on problem sets and exams should be your own. You may discuss approaches to
problems with other students, but as a general guideline, such discussions may not involve taking
notes. You must write up solutions on your own independently, and acknowledge anyone with
whom you discussed the problem. If you use papers or books or other sources (e.g. material from
the web) to help obtain your solution, you must cite those sources. You may not discuss exam
problems with other students.

7 Course topics

This course gives a rigorous treatment of the theory and computational techniques of linear pro-
gramming and its extensions, including formulation, duality theory, algorithms, sensitivity analysis,
network flow problems and algorithms, theory of polyhedral convex sets, systems of linear equa-
tions and inequalities, Farkas’ lemma, and exploiting special structure in the simplex method and
computational implementation. Topics covered will include the ellipsoid method, interior-point
methods, and computational complexity issues related to optimization problems.

A rough syllabus follows.

• Introduction to linear programming, duality (1 week).
• Applications of linear programming to network flow (1 week).
• Geometry of linear programs (1 week).
• Optimality of linear programs: strong duality, complementary slackness (1 week).
• The Simplex method, issues and variations (4 weeks).
• The ellipsoid method (2 weeks).
• Interior point methods (2 weeks).
• Other topics (1-2 weeks).