
ORIE 6300 Mathematical Programming I November 5, 2008

Recitation 9

Lecturer: Maurice Cheung Topic: Minimum-Cost Spanning Trees

1 Minimum-Cost Spanning Trees

Given a connected graph G = (V, E) with non-negative edge costs ce, we want to find a minimum-
cost subgraph so that every pair of nodes are connected.

We observe that there must exist an optimal solution where the subgraph does not contain
any cycle. If the subgraph is connected and a cycle exists, one can delete any edge from the cycle
and the resulting graph is still connected with cost no greater than before. Hence we can solve
this problem by finding the minimum-cost spanning tree (MST). There are several well known
algorithms for finding an MST. Here we describe the Kruskal’s Algorithm. Kruskal’s Algorithm is
an example of greedy algorithm: it makes the cheapest choice at each step:

1. Sort the edges E in non-decreasing order, i.e. ce1 ≤ ce2 ≤ ... ≤ cem .

2. Let H = (V, F) be a spanning forest of G. Initially F = ∅.
3. For i= 1 to m,

If F ∪ ei does not contain a cycle, add ei to F

The straightforward approach for proving correctness of Kruskal’s algorithm relies on the fact
that if an edge e is the minimum-cost edge in some cut S, then every minimum spanning tree
contains the edge e. Instead of using that proof, we will now discuss the connection between MST
and linear programming. In particular, we will show that there is a linear programming relaxation
for MST where the spanning tree returned by Kruskal’s algorithm is an optimal solution. As a
consequence, this gives an LP-based proof of the correctness of Kruskal’s algorithm.

2 An LP Relaxation for Minimum-Cost Spanning Tree

We have a variable xe for each edge. We will introduce some notation for writing the LP compactly.
For any subset of edges B, let x(B) :=

∑
e∈B xe. For any subset of vertices S, we let E(S) := set

of edges with both endpoints in S . One possible formulation for an LP relaxation of MST is as
follows:

(P) : min cT x
s.t. x(E(S)) ≤ |S| − 1, ∀S ⊂ V

x(E) = |V | − 1
xe ≥ 0, ∀e ∈ E

From the first set of constraints, taking S to be the two endpoints of any edges ensures that xe ≤ 1.
The constraints of this LP captures the properties of a spanning tree, namely that it contain no
cycle and has n− 1 edges (|V | = n).

Given a spanning tree T , let x be its characteristic vector (i.e. xe = 1 if e ∈ T and 0 otherwise).
Then x is a feasible solution to the LP above, hence (P) a valid LP-relaxation, and the optimal
value of (P) gives an lower bound of the cost of an MST.

9-1

For a subset of edges A, we let κ(A) be the number of connected components of the subgraph
(V, A) of G. Using this notation, we can write another LP-relaxation for MST:

(P ′) : min cT x
s.t. x(A) ≤ |V | − κ(A), ∀A ⊂ E

x(E) = |V | − 1
xe ≥ 0, ∀e ∈ E

Claim 1 (P) and (P ′) are equivalent.

Proof: First, suppose we have a feasible solution x to (P ′). We wish to show it’s feasible for
(P). Take A = E(S), then we have x(E(S)) ≤ |V | − κ(E(S)). Observe that for the subgraph
(V, E(S)), the number of connected component is at least |S| + 1: one for each vertex not in S,
and at least one connected component for S. Hence we have κ(E(S)) ≥ |V \ S|+ 1. Substituting
this into the constraint above gives x(E(S)) ≤ |S| − 1. The other constraints are common to both
LPs; hence x is feasible for (P).

Conversely, suppose x is feasible for (P). For any A ⊆ E, let κ(A) = k and S1, ..., Sk be the
vertex-set for the components for the subgraph (V,A). Then from the constraint in (P), we have
x(E(Si)) ≤ |Si| − 1, but:

x(A) ≤
k∑

i=1

x(E(S)) ≤
k∑

i=1

|Si| − 1 = |V | − k

Hence x is feasible for (P ′), and the two LPs are equivalent. 2

3 Analysis of Kruskal’s Algorithm

To prove the correctness of Kruskal’s algorithm, it suffices to show the characteristic vector of the
spanning tree produced by Kruskal’s algorithm, x0, gives an optimal solution to (P ′) or equivalently
(P). This combined with the fact that the optimal value for (P) is a lower bound for the cost of
any spanning tree will show x0 is a minimum-cost spanning tree.

The primal objective can be written as max −cT x. Associating a dual variable yA for each
constraint in (P ′) and taking the dual gives:

(D′) : min
∑

A⊆E(|V | − κ(A))yA

s.t.
∑

(yA : e ∈ A) ≥ −ce, ∀e ∈ E
yA ≥ 0, ∀A ⊂ E
yE free

To prove x0 is optimal, we will construct a dual feasible y0 that satisfies the complementary slackness
condition with x0. Let e1, ..., em be the order in which Kruskal’s algorithm considers the edges. Let
Ri denote e1, ..., ei. We define a dual solution y0 as follows: set y0

Ri
= cei+1 − cei for 1 ≤ i ≤ m− 1

and y0
Rm

= −cem . For all other A, set y0
A = 0.

To check that y0 is feasible for (D′), notice that yA ≥ 0, ∀A ⊂ E, by construction. Next, since
every edge e = ei for some i:

∑
(y0

A : e ∈ A) =
m∑

j=i

y0
Rj

=
m−1∑

j=i

(cej+1 − cej)− cem = −cei = −ce.

9-2

Hence all the dual constraints hold at equality. So we know y0 is feasible. This also gives the
complementary slackness condition

x0
e > 0 ⇒

∑
(y0

A : e ∈ A) = −ce.

Finally, if y0
A > 0, then A = Ri for some 1 ≤ i ≤ m − 1. But each stage of Kruskal’s Algorithm

maintains a spanning forest F , so from properties of spanning forest |F | = |V |−κ(F). Now consider
the spanning forest when Kruskal’s Algorithm scanned {e1, ..., ei}, since the algorithm adds edges
to decrease the number of components whenever possible, then we must have

x0(Ri) = |V | − κ(F) = |V | − κ(Ri)

giving us the other complementary slackness condition:

y0
A > 0 ⇒ x0

A = |V | − κ(A)

It follows that x0 is an optimal solution to (P ′), and hence also optimal for (P).

9-3

