ORIE 6300 Mathematical Programming I September 24, 2008

Recitation 4

Lecturer: Maurice Cheung Topic: Pointed Polyhedra

In class, we saw that every bounded polyhedra is a polytope in the set of convex combination
of its vertices.! Now we will extend the theory to pointed polyhedra (i.e., those that contain no
lines).

Definition 1 Let C be a nonempty convex set: then the recession cone of C,rec(C), is
{de R" :Vx € C,\Va >0,z + ad € C}.
Proposition 1 If C is a nonempty set then rec(C) is a nonempty convex cone.

Proof: Let dy,ds € rec(C), A1, A2 > 0. We want to show that A\jd; + \ady € rec(C). For any
xz € C and any a > 0

xr + Oé()\ldl + )\zdg) = [ZL’ + (Oé/\l)dl] + (Oé)\Q)dz.

The quantity in brackets lies in C since aA; > 0 and d; € rec(C'), and then the desired vector lies
in C because a\; > 0 and dy € rec(C'). Also, 0 € rec(C) by definition. O

Proposition 2 For Q := {y € R™ : ALy < c,, ALy = ¢,,} then (if Q is nonempty)
rec(Q) ={d € R™: ATd <0, ALd = 0}.

Proof:
O:
if ATd <0,ATd =0 then for any y € Q,a > 0.

Al(y+ad) = Aly+aald
< ¢ +0
= Cg,
Similarly AL(y+ad) = cu,

hence (y + ad) € Q.

C:
Suppose d € rec(Q), and choose any y € Q. Then Va > 0

Al(y+ad) = Aly+aAld
< ¢
then Agy < ¢y
= Ald < 0
otherwise, the above would fail for large «
similarly, ATd = 0.

!Based on script of Fall 2005 lecture 5 by Gurmeet Singh
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Theorem 3 (Representation of Pointed Polyhedra). Let Q (defined as in Proposition 2) be a
nonempty pointed polyhedron, and let P be the set of all convex combinations of its vertices and K
be its recession cone. Then

Q=P+ K:={p+d:pe Pde K}.

Proof:

2

Every vertex of ) satisfies all linear constraints of () so p also does for any p € P.
So any p+d € P+ K has

Al(p+d)=ATp+ ATd < co + 0 = cy3
AT(p+d)=ATp+ ATd = ¢,y + 0 = ¢y
C:
The proof is by induction on {m — ra(y)}.
True for {m — ra(y) = 0} < y is itself a vertex of  and d = 0 € rec(C).

Suppose true if {m — ra(y) < k} for some k > 0 and consider y € @ with ra(y) = m — k < m.
Choose 0 # d € R™ with {ade = 0,Vj € I(y)} and consider y + ad,a € R. Since @ is pointed
there are three cases to consider.

(1) « is bounded above and below, say by a <0 & @ > 0.
As in the previous theorem

vy = z5Wtaed + FZ(y+ad),

a—

5]

and (y + a@d) has m — ra(y + @d) < k, so

(y+ad) = p + d , peP , deK,
and similarly
(y+ad) = p + d , peP , deK,
SO
y 2 (p+d + =@+

[=%=p %ﬁ] + {...§+...E}.

The vector in brackets is a point of P and that in braces a point in K.
(2) « is bounded below but not above. Then d € K and y = [y + ad] + (—a)d, with a defined

as before. The vector in brackets lies in P 4+ K as in the first part by the inductive hypothesis.
Therefore

y = (p+d)+(—a)d
= p+(d+ (—a)d)
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liesin P+ K.
(3) « is bounded above but not below. Then we can simply switch d to —d and @ to —a, and
we get back to case(2).

This completes the proof.
O

Theorem 4 (Fundamental theorem of LP). Consider the LP problem max{b’y : y € Q} with Q
being a pointed polyhedron. Then

1. if there is a feasible solution, there is a vertex solution (basic feasible solution);

2. if there is a feasible solution and by is unbounded above on Q, then there is a ray or halfline:
{y+ad:a>0}€Q on which by is unbounded above; and

3. if bTy is bounded above on Q, then the maz is attained and attained at a vertex Q.

Proof:
(1): It Q # 0, P # (), so there exists a vertex.

(2)& (3):

Assume P # () & P is a set of convex combinations of vy, vg, v3, ..., Uk.

sup{bTy:y € Q} = sup{bly:yc P+ K}
= sup{bip+bld:pec Pdc K}
= sup{bip:pc P} +sup{b?d:dc K}.

If there is some d € K with b7d > 0 then by considering ad , o — +00, see that supide 1 d €
K} = +00. Then b”y is unbounded above on @ and clearly unbounded above on {y+ad, a>0}

for any y € Q.
If there is no such d € K, then sup{b’d : d € K} = 0, attained by d = 0. Then

sup{b’y:y € Q} = sup{b’p:pe P}
= sup{3" N7 F N =1, all \; > 0}
= maXlgiSka’U@'

In this case sup{b’y : y € Q} is attained by y = v; where i attains the maximum.



