ORIE 6300 Mathematical Programming I

September 24, 2008

Recitation 4

Lecturer: Maurice Cheung Topic: Pointed Polyhedra

In class, we saw that every bounded polyhedra is a polytope in the set of convex combination of its vertices.¹ Now we will extend the theory to pointed polyhedra (i.e., those that contain no lines).

Definition 1 Let C be a nonempty convex set: then the recession cone of C, rec(C), is

$$\{d \in R^m : \forall x \in C, \forall \alpha \ge 0, x + \alpha d \in C\}.$$

Proposition 1 If C is a nonempty set then rec(C) is a nonempty convex cone.

Proof: Let $d_1, d_2 \in rec(C), \lambda_1, \lambda_2 \geq 0$. We want to show that $\lambda_1 d_1 + \lambda_2 d_2 \in rec(C)$. For any $x \in C$ and any $\alpha \geq 0$

$$x + \alpha(\lambda_1 d_1 + \lambda_2 d_2) = [x + (\alpha \lambda_1) d_1] + (\alpha \lambda_2) d_2.$$

The quantity in brackets lies in C since $\alpha \lambda_1 \geq 0$ and $d_1 \in rec(C)$, and then the desired vector lies in C because $\alpha \lambda_1 \geq 0$ and $d_2 \in rec(C)$. Also, $0 \in rec(C)$ by definition.

Proposition 2 For $Q := \{ y \in \mathbb{R}^m : A_x^T y \le c_x, A_w^T y = c_w \}$ then (if Q is nonempty) $rec(Q) = \{ d \in \mathbb{R}^m : A_x^T d \le 0, A_w^T d = 0 \}.$

Proof:

 \supset :

if $A_x^T d \leq 0, A_w^T d = 0$ then for any $y \in Q, \alpha \geq 0$.

$$\begin{array}{rcl} A_x^T(y+\alpha d) & = & A_x^Ty+\alpha A_x^Td \\ & \leq & c_x+0 \\ & = & c_x, \\ \text{Similarly} & A_w^T(y+\alpha d) & = & c_w, \end{array}$$

hence $(y + \alpha d) \in Q$.

 \subseteq :

Suppose $d \in rec(Q)$, and choose any $y \in Q$. Then $\forall \alpha \geq 0$

$$A_x^T(y + \alpha d) = A_x^T y + \alpha A_x^T d$$

$$\leq c_x$$
then
$$A_x^T y \leq c_x$$

$$\Rightarrow A_x^T d \leq 0$$

otherwise, the above would fail for large α similarly,

$$A_w^T d = 0.$$

4-1

¹Based on script of Fall 2005 lecture 5 by Gurmeet Singh

Theorem 3 (Representation of Pointed Polyhedra). Let Q (defined as in Proposition 2) be a nonempty pointed polyhedron, and let P be the set of all convex combinations of its vertices and K be its recession cone. Then

$$Q = P + K := \{ p + d : p \in P, d \in K \}.$$

Proof:

⊇:

Every vertex of Q satisfies all linear constraints of Q so p also does for any $p \in P$. So any $p + d \in P + K$ has

$$A_x^T(p+d) = A_x^T p + A_x^T d \le c_x + 0 = c_x;$$

$$A_w^T(p+d) = A_w^T p + A_w^T d = c_w + 0 = c_w.$$

 \subseteq :

The proof is by induction on $\{m - ra(y)\}$.

True for $\{m - ra(y) = 0\} \Leftrightarrow y$ is itself a vertex of Q and $d = 0 \in rec(C)$.

Suppose true if $\{m - ra(y) < k\}$ for some k > 0 and consider $y \in Q$ with ra(y) = m - k < m. Choose $0 \neq d \in \mathbb{R}^m$ with $\{a_j^T d = 0, \forall j \in I(y)\}$ and consider $y + \alpha d, \alpha \in \mathbb{R}$. Since Q is pointed there are three cases to consider.

(1) α is bounded above and below, say by $\underline{\alpha} < 0 \& \overline{\alpha} > 0$. As in the previous theorem

$$y = \frac{\overline{\alpha}}{\overline{\alpha} - \alpha} (y + \underline{\alpha}d) + \frac{-\underline{\alpha}}{\overline{\alpha} - \alpha} (y + \overline{\alpha}d),$$

and $(y + \overline{\alpha}d)$ has $m - ra(y + \overline{\alpha}d) < k$, so

$$\begin{array}{rclcrcl} (y+\overline{\alpha}d) & = & \overline{p} & + & \overline{d} & , & \overline{p} \in P & , & \overline{d} \in K, \\ \text{and similarly} & & & & \\ (y+\underline{\alpha}d) & = & \underline{p} & + & \underline{d} & , & \underline{p} \in P & , & \underline{d} \in K, \end{array}$$

so

$$y = \frac{\overline{\alpha}}{\overline{\alpha} - \underline{\alpha}} (\underline{p} + \underline{d}) + \frac{-\underline{\alpha}}{\overline{\alpha} - \underline{\alpha}} (\overline{p} + \overline{d})$$
$$= [\frac{\overline{\alpha}}{\overline{\alpha} - \alpha} p + \frac{-\underline{\alpha}}{\overline{\alpha} - \alpha} \overline{p}] + \{ \dots \underline{d} + \dots \overline{d} \}.$$

The vector in brackets is a point of P and that in braces a point in K.

(2) α is bounded below but not above. Then $d \in K$ and $y = [y + \underline{\alpha}d] + (-\underline{\alpha})d$, with $\underline{\alpha}$ defined as before. The vector in brackets lies in P + K as in the first part by the inductive hypothesis. Therefore

$$y = (\underline{p} + \underline{d}) + (-\underline{\alpha})d$$
$$= \underline{p} + (\underline{d} + (-\underline{\alpha})d)$$

lies in P + K.

(3) α is bounded above but not below. Then we can simply switch d to -d and $\overline{\alpha}$ to $-\underline{\alpha}$, and we get back to case(2).

This completes the proof.

Theorem 4 (Fundamental theorem of LP). Consider the LP problem $\max\{b^Ty:y\in Q\}$ with Q being a pointed polyhedron. Then

- 1. if there is a feasible solution, there is a vertex solution (basic feasible solution);
- 2. if there is a feasible solution and b^Ty is unbounded above on Q, then there is a ray or halfline: $\{y + \alpha d : \alpha \geq 0\} \in Q$ on which b^Ty is unbounded above; and
- 3. if b^Ty is bounded above on Q, then the max is attained and attained at a vertex Q.

Proof:

- (1): If $Q \neq \emptyset, P \neq \emptyset$, so there exists a vertex.
- (2)& (3):

Assume $P \neq \emptyset$ & P is a set of convex combinations of $v_1, v_2, v_3, ..., v_k$.

$$\begin{split} \sup\{b^Ty: y \in Q\} &= \sup\{b^Ty: y \in P + K\} \\ &= \sup\{b^Tp + b^Td: p \in P, d \in K\} \\ &= \sup\{b^Tp: p \in P\} + \sup\{b^Td: d \in K\}. \end{split}$$

If there is some $\overline{d} \in K$ with $b^T \overline{d} > 0$ then by considering $\alpha \overline{d}$, $\alpha \to +\infty$, see that $\sup\{b^T d : d \in K\} = +\infty$. Then $b^T y$ is unbounded above on Q and clearly unbounded above on $\{y + \alpha \overline{d}, \alpha \geq 0\}$ for any $y \in Q$.

If there is no such $\overline{d} \in K$, then $\sup\{b^Td: d \in K\} = 0$, attained by d = 0. Then

$$\sup\{b^{T}y : y \in Q\} = \sup\{b^{T}p : p \in P\}$$

$$= \sup\{\sum_{i=1}^{k} \lambda_{i}(b^{T}v_{i}) : \sum_{i=1}^{k} \lambda_{i} = 1, \text{ all } \lambda_{i} \geq 0\}$$

$$= \max_{1 \leq i \leq k} b^{T}v_{i}$$

In this case $\sup\{b^Ty:y\in Q\}$ is attained by $y=v_i$ where i attains the maximum.