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Feasibility and Unboundedness 1

Consider a linear program in arbitrary form. We know that it can potentially be infeasible or have
unbounded optimal objective. Additionally, if it’s feasible and not unbounded, we can show the
existence of an optimal solution by applying the Weierstrass Theorem. Hence, this gives three
options for the types of solutions a linear program can have.

Additionally, the dual of a linear program is itself a linear program, so the same three options
apply. Hence, the first natural question is what combinations of these can appear for a primal-dual
pair of linear programs?

P\D I O U

I ? ? ?
O ? ? ?
U ? ? ?

Let’s try to fill in some of these boxes.

First, recall the weak duality theorem: If x is a feasible solution to a minimization linear pro-
gram and y is a feasible solution to its dual, then bT y ≤ cx.

Suppose the primal minimization program is unbounded. This immediately implies that the dual
must be infeasible. Similarly, if the dual is unbounded, this immediately implies that the primal
must be infeasible. To see this in the first case, let y be any feasible solution to the dual. Since
the primal is unbounded, there exists an x̂ such that cx̂ < bT y, contradicting the Weak Duality
Theorem. Hence, no such y exists. The other argument can be proved identically.

Hence, our table now looks like:

P\D I O U

I ? ? X
O ? ? X

U X X X

Given the above theorem, it seems natural to ask whether the reverse implication holds. Does
primal infeasibility imply dual unboundedness? Consider the following LP:

1Based on previous notes of Rajithkumar Rajagopalan and Dennis Leventhal
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max [2, -1] x

s.t.
[

1 −1
−1 1

]
x ≤

[
1
−2

]

x ≥ 0

Its corresponding dual is:

max [-1, 2] y

s.t.
[

1 −1
−1 1

]
y ≤

[ −2
1

]

y ≥ 0
Note that the primal is infeasible and that the dual feasible region is exactly the primal feasible
region, hence, both are infeasible. This adds another option to our table, giving:

Finally, using Strong Duality Theorem we know when one of primal or the dual has an optimal
solution, they both must have an optimal solution. Hence our table looks like:

P\D I O U

I X X X
O X X X

U X X X

Farkas Lemma and its Application

First recall the Farkas’ Lemma :

Theorem 1 (Farkas’ Lemma) If A ∈ Rm×n and b ∈ Rm, then exactly one of the following holds:

1. ∃x ≥ 0 such that Ax ≤ b

2. ∃y such that AT y ≥ 0, bT y < 0, y ≥ 0

Here is another form of the Farkas Lemma:

Theorem 2 (Alternative Farkas’ Lemma) Exactly one of the following holds:

1. ∃x ≥ 0 such that Ax ≤ b

2. ∃y such that AT y ≥ 0, bT y < 0, y ≥ 0

Proof: Note Ax = b, x ≥ 0 is feasible if and only if Ax + s = b, x, s ≥ 0 is feasible. Apply the
original Farkas Lemma to this new system. 2

Let’s see an application of the Farkas Lemma. Note that we can only prove that unboundedness
implies infeasibility for linear programs and not the converse in the previous section. We now prove
a related implication for the unboundedness of feasible regions of linear programs.
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Theorem 3 (Clark’s Theorem) Given the following primal and dual LPs, if one of them is
feasible, then the feasible region for one of them is non-empty and unbounded.

Primal LP: Dual LP:
min cx max yb
s.t.: Ax ≥ b s.t.: yA ≤ c

x ≥ 0 y ≥ 0

It’s important to note that the result of the theorem is that the feasible region of one of the
LPs is unbounded, but it may not be the case that the LP has unbounded objective function value
with the given objective function.

Proof: There are three possibilities to consider.

1. The primal is infeasible and the dual is unbounded.

2. The dual is infeasible and the primal is unbounded.

3. Both the primal and dual are feasible and not unbounded (hence have optimal solution).

In the first two cases, we immediately have the result we want. Hence, suppose we’re in the
last case. Now, consider a different primal problem with c replaced by ĉ = [−1,−1, . . . ,−1] and its
associated dual.

Primal LP: Dual LP:
min ĉx max bT y
s.t.: Ax ≥ b s.t.: AT y ≤ ĉ

x ≥ 0 y ≥ 0

If this new LP has unbounded objective function value, then the primal has an unbounded feasible
region, and we’re done. Otherwise, the primal has bounded objective function value. Note that
the modified primal has the same feasible region as the original primal, hence it is feasible by as-
sumption. Then, we can apply the Alternative Farkas’ lemma to get the following system in which
one and only one can hold:

1. ∃y such that AT y ≤ ĉ, y ≥ 0

2. ∃x such that Ax ≥ 0, ĉT x < 0, x ≥ 0

If (2) holds, let x̂ be a feasible solution to (2) and x be a feasible solution to modified LP and
λ ¿ 0. Then

A(x + λx̂) = Ax + λAx̂ ≥ b + λ ∗ 0 = b

So λx̂ is feasible for all λ ≥ 0. Additionally, λcx̂ → −∞ as λ → ∞, so the modified primal which
has the same feasible region as the original primal is unbounded and we are done.

Otherwise if (1) holds, let ŷ be a feasible solution to the modified dual and let y be a feasible
solution to the original dual. Then using a similar argument as above, we can show that for any
k ≥ 0, y + kŷ is feasible for the original dual:

First, we know that it satisfies y + kŷ ≥ 0 since y ≥ 0, ŷ ≥ 0, and k ≥ 0. Now, we need to show
that AT (y + kŷ) ≤ c. We know that AT y ≤ c, and AT ŷ ≤ ĉ. But since ĉ is the vector of -1s, that
gives

kAT ŷ ≤ kĉ ≤ 0.
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Thus, we have that AT (y + kŷ) ≤ c for any k ≥ 0.

Thus, the direction ŷ give us an unbounded direction in the feasible region for the original dual.
Hence in both cases we have at least one of the primal or the dual having an unbounded feasible
region, and we’re done 2
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