ORIE 6300 Mathematical Programming I

October 31, 2008

Problem Set 8

Due Date: November 7, 2008

- 1. (15 points) Consider the following version of the cutting stock problem. There is a demand b_i for every size s_i and a width W for the raw material, just in the version discussed in class. Change the method from class to work with the following version instead: customers have a 10% tolerance in the order, that is, all the solution has to satisfy is a demand some place between $.9b_i$ and $1.1b_i$ for every size s_i and whatever produced will be bought by the customers. Last time we were minimizing the number of width W raws used. Suppose you are given N (the number of raws you have), and instead you want to maximize the amount of demand satisfied, i.e., if your solution produces p_i finals of size s_i , then you must have that $.9b_i \le p_i \le 1.1b_i$ and your goal is to maximize $\sum_i p_i$. Explain how to modify the solution discussed in class to solve this problem.
- 2. (20 points) Consider the dual simplex algorithm for an uncapacitated network flow problem as described in the recitation on October 8. Suppose you have a basic solution \bar{f} corresponding to some spanning tree, and all the reduced costs $\bar{c}_{(i,j)}$ are nonnegative, but some basic variable, say $f_{(k,\ell)}$, is negative. So as in the dual simplex method, we want to remove (k,ℓ) from the basis (and thus from the spanning tree).
 - (a) (5 points) What happens to the spanning tree when (k, ℓ) is removed?
 - (b) (10 points) In the dual simplex method, we want to choose some variable $f_{(g,h)}$ to enter the basis such that the entry $\bar{A}_{p,(g,h)}$ is negative. In this case, which arcs have this entry negative, and what is this entry for such arcs?
 - (c) (5 points) Which arc is chosen by the minimum ratio test to enter the basis?
- 3. (15 points) Recall the maximum multicommodity flow problem given in the prelim. In this problem we are given a directed graph G with nodes V and directed arcs A, and k source-sink pairs (s_i, t_i) , where $s_i, t_i \in V$ for i = 1, ..., k. We may send flow only from a source s_i to the corresponding sink t_i . The goal is to send as much flow as possible from the sources s_i to their corresponding sinks t_i . Each arc $a \in A$ has a capacity u_a ; we may not send more than u_a total units of flow through arc a.
 - In the prelim, we used a linear programming formulation of the problem in which there is a variable x_P for each s_i - t_i path P. However, this isn't the only possible linear programming formulation of the problem.
 - (a) (5 points) Give another linear programming formulation of the problem which uses variables f_{uv}^i to indicate the amount of flow being sent from s_i to t_i using arc $(u, v) \in A$.
 - (b) (10 points) If you've set up your linear programming formulation correctly in the part above, you'll notice that it can be solved via a Dantzig-Wolfe decomposition. What are the linking constraints? What are the associated subproblems? What is an extreme point of the subproblem? How can you tell whether the master problem has a negative reduced cost variable?