September 26, 2008

Problem Set 4

Due Date: October 3, 2008

- 1. In class we showed that given a polytope $Q = conv(v_1, \ldots, v_k)$, if 0 is in the interior of Q, then Q is a bounded polyhedron. Now suppose that we only know that there is some point v in the interior of Q. Show that Q is bounded polyhedron. (Hint: Think about $Q v = \{w v : w \in Q\}$).
- 2. Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron. Show that if 0 is on the boundary of P (that is, $0 \in P$, but 0 is not in the interior of P), then the polar P^* of P is not bounded.
- 3. We proved strong duality using Farkas' Lemma. Suppose that we had proved strong duality in some other way. Use strong duality to prove that Farkas' Lemma is true.
- 4. (Strict Complementary Slackness) Consider the standard form linear programs, with primal LP (min $c^T x : Ax = b, x \ge 0$) and dual LP (max $b^T y : A^T y \le c$). Suppose the value of the two LPs is γ .
 - (a) Show that the set of optimal solutions to the primal is a convex set; argue the same for the dual.
 - (b) Show that either there exists an optimal solution x to the primal such that $x_j > 0$ or there exists an optimal solution y to the dual such that the *j*th inequality is strict; that is, $\sum_{i=1}^{n} a_{ij}y_i < c_j$. (Hint: Consider the linear program $(\min -e_j^T x : Ax = b, -c^T x \ge -\gamma, x \ge 0)$, where e^j is a vector that has a 1 in the *j*th component, and 0 everywhere else).
 - (c) Show that there exist a primal optimal solution x^* and a dual optimal solution y^* such that $x_j^* > 0$ if and only if the *j*th inequality of the dual is met with equality.