September 20, 2008

Problem Set 3

Due Date: September 26, 2008

- 1. Give an example of a primal-dual pair for which both the primal and dual are infeasible, and demonstrate that they are infeasible. Use a matrix $A \in \Re^{1 \times 1}$.
- 2. Suppose that $P^{i} = \{x \ge 0 : A^{i}x = b^{i}\}$ for i = 1, 2 are both bounded. Prove that $P = P^{1} + P^{2}$ is also a polytope, where $P^{1} + P^{2} = \{x^{1} + x^{2} : x^{1} \in P^{1} \text{ and } x^{2} \in P^{2}\}$.
- 3. Consider the set $P = \{x : Ax \ge 0\}$ and assume that we have $x \ge 0$ for all $x \in P$, i.e., that $x \ge 0$ is implied by $Ax \ge 0$.
 - (a) A set K is a cone if $x, y \in K$ implies that $\lambda x + \mu y \in K$ for all $\mu, \lambda \ge 0$. Prove that P is a cone.
 - (b) An extreme ray of a cone K is a nonzero vector $x \in K$ such that $x + y \in K$ and $x y \in K$ implies that $y = \lambda x$ for some λ .

Give another characterization of the extreme rays of the polyhedral cone P, using the rank of a submatrix of A. (Hint: think about the positive orthant as the canonical example of a cone, in order to get some intuition here.)

- (c) Two extreme rays x and y of a cone K are said to be the same if $x = \lambda y$ for some $\lambda > 0$. Prove that the number of different extreme rays of our polyhedral cone P is finite. Give a finite bound on the maximum number of extreme rays possible assuming that A is has m rows and n columns.
- (d) Let r^1, \ldots, r^k denote the finite set of extreme rays of P. Let

$$Q = cone(r^1, \dots, r^k) = \{x = \sum_i \lambda_i r^i : \lambda_i \ge 0 \text{ for all } i\}.$$

Prove that P = Q. (Hint: consider $P' = \{x \in P : \sum x_i = 1\}$.)

It might help to visualize this as moving from the description of P by the faces of the cone that bound it $(Ax \ge 0)$ to a description of P by the outside rays (r^1, \ldots, r^k) that bound it.

- 4. (a) Given a convex cone $K \subseteq \Re^n$, prove that the polar of K is the set $\{z \in \Re^n : x^T z \le 0 \text{ for all } x \in K\}$.
 - (b) Give the polar of the non-negative orthant $\{x \in \Re^n : x \ge 0\}$.