ORIE 6300 Mathematical Programming I

September 11, 2008

Problem Set 2

Due Date: September 19, 2008

- 1. Recall the maximum flow problem, and its dual as they were presented in class. We used the variables z_{uv}^* of an optimal dual solution to define cost(s,v) for each vertex v, and then defined the sets $S_{\rho} = \{v : cost(s,v) \leq \rho\}$, and showed that each S_{ρ} is an s-t cut for $0 \leq \rho < 1$. We have also shown that, in any optimal dual solution z^* , at least one of the cuts S_{ρ} for some $0 \leq \rho < 1$ defines a minimum cut by showing that the expected value $E[n(S_{\rho})] \leq \sum_{(u,v) \in A} z_{uv}^*$.
 - (a) Show that all cuts S_{ρ} occurring with positive probability in the expectation must be minimum s-t cuts for the graph.
 - (b) (Extra credit) Show that all cuts S_{ρ} cuts are minimum s-t cuts for the graph.
- 2. (Carathéodory's theorem) Show that if $x \in \mathbb{R}^n$ is a convex combination of v_1, \ldots, v_k , then it is also a convex combination of at most n+1 of these points.
- 3. Consider the polytope $Q = conv(v_1, \ldots, v_k)$ with $v_i \in \mathbb{R}^n$ for all i. Prove that for any objective function $c \in \mathbb{R}^n$, there is some v_i such that $c^T v_i \leq c^T x$ for all $x \in Q$.
- 4. Suppose that you are given a feasible solution \bar{x} of value $\bar{\gamma}$ to the problem $\max(c^T x : Ax \leq b)$. Give a method that either demonstrates that the feasible region is unbounded (i.e., there is a point x and direction y such that $x + \lambda y$ is feasible for all $\lambda > 0$) or that finds a vertex \tilde{x} of the feasible region with objective value $c\tilde{x} \geq \bar{\gamma}$. Your method should not use general purpose linear programming algorithms (like the simplex method). (Hint: some of the discussion of the equivalence of bounded polyhedra and polytopes, as well as the equivalence of extreme points, vertices, and basic feasible solutions, might prove useful.)