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Problem Set 11

Due Date: December 5, 2008

1. (20 points) In the k-center problem, we are given a set of locations V and distances dij between
all locations i, j ∈ V . Distances are symmetric (dij = dji for all i, j ∈ V ) and obey the triangle
inequality (dik ≤ dij +djk for all i, j, k ∈ V ). We are also given an input k, which is an integer.
The goal of the problem is to choose a subset S ⊆ V of k centers to minimize the distance of
every location to the nearest center; that is, we wish to minimize maxi∈V minj∈S dij . Let S∗

be an optimal solution to the problem, and let OPT = maxi∈V minj∈S∗ dij .

(a) (10 points) Consider an algorithm for this problem that starts by picking some center
arbitrarily from V , then repeatedly picks the next center to be as far away as possible
from the previously chosen centers. That is, if S is the set of currently chosen centers,
we pick the next center to be the location i that maximizes maxi∈V minj∈S dij . Show
that this algorithm always returns a solution S such that maxi∈V minj∈S dij ≤ 2OPT .

(b) (10 points) Suppose that there exists some polynomial-time algorithm that always finds
a solution S′ to the k-center problem with maxi∈V minj∈S′ dij ≤ ρ×OPT , where ρ < 2.
Prove that such an algorithm would imply that P = NP . (Hint: consider the problems
shown to be NP-complete in class and on previous problem sets, and show that such an
algorithm would imply a polynomial-time algorithm for an NP -complete problem.)

2. (25 points) Recall from the midterm the maximum multicommodity flow problem. In this
problem we are given a directed graph G with nodes V and directed arcs A, and k source-
sink pairs (si, ti), where si, ti ∈ V for i = 1, . . . , k. We may send flow only from a source si

to the corresponding sink ti. The goal is to send as much flow as possible from the sources
si to their corresponding sinks ti. Each arc a ∈ A has a capacity ua; we may not send more
than ua total units of flow through arc a.

We can write the problem as a linear program. Let Pi be the set of paths in G from si to ti.
Our LP will have a variable xP for each P ∈ Pi for each i = 1, . . . , k. Then the maximum
multicommodity flow problem can be modelled as the following linear program:

Max
k∑

i=1

∑

P∈Pi

xP

k∑

i=1

∑

P∈Pi:a∈P

xP ≤ ua ∀a ∈ A

xP ≥ 0∀i = 1, . . . k, ∀P ∈ Pi.

The dual of the maximum multicommodity flow linear program is

Min
∑

a∈A

ua`a

∑

a∈P

`a ≥ 1 ∀P ∈ Pi,∀i = 1, . . . , k

`a ≥ 0 ∀a ∈ A.
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(a) (10 points) Explain how to solve the dual in polynomial time (given the maximum
multicommodity flow instance as input) using the ellipsoid method.

(b) (15 points) Unlike the simplex method, the ellipsoid method doesn’t automatically give
an optimal solution to the dual of the LP being solved. Explain how to solve the original
maximum multicommodity flow LP given the execution of the ellipsoid method in solving
the dual above.

3. (25 points) Recall the assignment problem, and suppose that we draw the costs cij uniformly
from [0, 1] for each i, j, where i = 1, . . . , n and j = 1, . . . , n. In this problem, we show that
the expected optimal solution to the assignment problem has value at most 2 (i.e. it doesn’t
depend on n).

(a) (3 points) Let C be the random variable such that C =
∑n

i=1

∑n
j=1 cij . Compute the

expected value of C.

(b) (15 points) We know from the recitation on October 1 that any basis is given by a tree
T in the bipartite graph of edges, and that we can choose one of the dual variables (say
un) and set it to zero arbitrarily. Let XT be the event that T is the optimal basis. We
now wish to compute E[C|XT ]. To do this, we see that the values of the dual variables
ui and vj are fixed by the realizations of the values of the cij for all (i, j) ∈ T , but that
for any (i, j) /∈ T , cij ≥ ui + vj , and this changes the distribution and thus the expected
value of cij for these non-tree edges. Use this to show that

E[C|XT ] ≥ 1
2

∑

(i,j)∈T

(ui + vj) +
∑

(i,j)/∈T

(
1
2

+
1
2
(ui + vj)

)
.

(c) (7 points) We know that E[C] =
∑

T E[C|XT ] Pr[XT ]. Ignoring the possibility that
there may be more than one optimal basis for a given set of costs, and letting Z∗ be
a random variable denoting the cost of an optimal assignment, use the above to prove
that E[Z∗] < 2.
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