
ORIE 6300 Mathematical Programming I December 4, 2008

Lecture 26

Lecturer: David P. Williamson Scribe: David Rowinski

1 Interior-Point Methods for Linear Programming

Let us first review the main results from the previous lecture. Recall that our objective was to
solve the LP:

Min cT x

Ax = b

x ≥ 0.

with dual

Max bT y

AT y + s = c

s ≥ 0.

The main idea was to find a set of primal feasible and dual feasible points, and continually update
these variables using a Newton method until complementary slackness was achieved. Recall that
the Newton step is the solution to the system:




0 AT I
A 0 0
S 0 X







∆x
∆y
∆s


 =




0
0

−XSe + σµe


 (1)

And the general primal-dual interior-point algorithm takes the following form:

Primal-Dual Interior-Point

(x0, y0, s0) ← initial feasible point (x0, s0 > 0)
µ0 ← 1

n(x0)T s0

k ← 0
While µk > ε

Solve




0 AT I
A 0 0
Sk 0 Xk







∆xk

∆yk

∆sk


 =




0
0

−XkSke + σkµke




(xk+1, yk+1, sk+1) ← (xk, yk, sk) + αk(∆xk, ∆yk, ∆sk)
where αk is such that xk+1, sk+1 > 0

µk+1 ← 1
n(xk+1)T sk+1

k ← k + 1

where µ = xT s
n and σ ∈ [0, 1] is a centering parameter.

26-1

This general framework omits several details that must be addressed in any implementation of
an interior-point algorithm for linear programming. In particular, we have not specified how the
centering parameter σk is chosen, as different interior-point algorithms use different methods to
select σk. Furthermore, we have not considered how to set the threshold ε, find an initial solution
to the LP, or find the optimal solution to the LP given the solution that the algorithm returns.

1.1 Duality Gap and Termination

Suppose that in some iteration, the current solutions are (x, y, s). We consider the choice 1
n

∑n
i=1 xisi =

1
nxT s; that is, given our current solution, solving the system for this value makes the xisi equal for
all i.

This quantity has a relation to the nearness to optimality since

xT s = xT (c−AT y) = cT x− bT y.

Thus this is the difference between the primal and dual objective functions; we call this difference
the duality gap. Since we have primal and dual feasible solutions, we know at optimality these two
quantities are equal. Our algorithms will drive this quantity down to a small amount.

We define µ ≡ 1
nxT s. While µ ≥ ε, we apply Newton’s method as illustrated previously. When

µ < ε, the algorithm terminates, so computed solutions are within an additive nε of optimal.

1.2 Centering Parameter

To balance the movement towards the central path against the movement toward optimal solutions,
we maintain a centering parameter σ ∈ [0, 1]. If σ = 1, then our update will move towards the
center of the feasible region. On the other hand, if σ = 0, then our update step is in the direction of
optimal solutions to the linear programs. A step with σ = 1 is referred to as a centering step, and
a step with σ = 0 is referred to as an affine-scaling step. The choice of the centering parameter σ
provides us with a trade-off between moving towards the central path and moving toward optimal
solutions to the linear programs.

1.3 Keeping Steps Bounded Away From Boundary of Feasible Region

During the course of iterating through a sequence of solutions to the linear programs, we can keep
the solutions away from the boundary by ensuring that they remain in a neighborhood of the central
path. Because solutions in the central path are essentially at the same distance from n boundaries
of the feasible regions, by maintaining solutions near the central path, we can prevent them from
approaching the boundaries of the feasible regions.

There are several common types of neighborhoods used by interior-point algorithms. For a
parameter θ, a neighborhood that uses the L2 norm to measure distance is defined as N2(θ) =
{strictly feasible (x, y, s) | ‖XSe−µe‖ ≤ θµ}. Note that ‖XSe−µe‖ ≤ θµ if and only if

∑n
i=1(xisi−

µ)2 ≤ θ2µ2. Figure 1(a) shows an example of a neighborhood N2(θ).

1.4 Types of Interior-Point Algorithms

There are several major types of interior-point algorithms for linear programming.

• Path-Following: Path-following algorithms use update steps that follow the central path.
The extent to which a path-following algorithm follows the central path is determined by
the centering parameter σ. The method of choosing σ distinguishes different path-following
algorithms.

26-2

x s2 2

x s1 1

x s2 2

x s1 1

(a)

central path

(b)

central path

N

N

2

2

(
1

4)

()
1

2

Figure 1: (a) A neighborhood of the central path in the case of n = 2 variables. (b) The Predictor-
Corrector algorithm alternates between predictor steps, in which it moves as far as possible while
remaining in N2(1

2), and corrector steps, in which it takes a full step (α = 1), returning to N2(1
4).

– Short-Step: In short-step algorithms, σ is set close to 1 so that the solutions stay near
the central path. At most O(

√
n log 1

ε) iterations are needed to achieve µk ≤ ε. This is
the best complexity bound known for an interior-point algorithm.

– Long-Step: In contrast to short-step algorithms, long-step algorithms pick the centering
parameter σ to be farther from 1, and as a result the solutions are farther from the central
path. The number of iterations required to reduce µk so that it is below the threshold
ε is O(n log 1

ε), but long-step algorithms perform better than short-step algorithms in
practice.

– Predictor-Corrector: Predictor-corrector algorithms strike a balance between follow-
ing the central path and moving toward optimal solutions by alternating between steps
with σ = 1 and steps with σ = 0. These algorithms execute O(

√
n log 1

ε) update iter-
ations, and thus are as fast in theory as the best known interior-point algorithms. A
variant on the predictor-corrector approach is the standard code used in practice.

• Potential-Reduction: Potential-reduction algorithms make use of a potential function.
The potential function approaches +∞ when xisi → 0 for some i = 1, . . . , n, but µ 6→ 0.
This situation occurs when the solutions go near a boundary of the feasible region, but do
not approach optimal solutions. The potential function approaches −∞ if and only if the
solutions (x, y, s) approach optimal solutions to the linear programs. One example of this is
the potential function

Φρ(x, s) = ρ log(xT s)−
n∑

i=1

log(xisi)

for a parameter ρ > n. Potential-reduction algorithms perform update steps to reduce the
potential function, eventually moving toward optimal solutions. Karmarkar’s seminal interior-
point algorithm was a potential-reduction algorithm.

26-3

1.5 Short-Step Path-Following Algorithm

We now consider a short-step path-following algorithm, characterized by the parameters α and
σ. We choose αk = 1 so that we take a full update step in the Newton direction each iteration.
We choose the centering parameter to be σk = 1 − 0.4√

n
at each iteration. Note that the centering

parameter is near unity so that the steps taken by the algorithm are indeed short. We wish to
establish a complexity bound for the short-step algorithm.

We first claim the following lemma, which states that as long as the initial points are within some
neighborhood of the central path, feasibility is guaranteed, and we stay away from the boundary.

Lemma 1 If (x0, y0, s0) ∈ N2(0.4), then (xk, yk, sk) ∈ N2(0.4)∀k.

Next we address the issue of progress by showing that the duality gap goes down by a certain
factor at each iteration.

Lemma 2 µk+1 = σkµk = (1− 0.4√
n
)µk.

We can use this lemma to prove the following theorem.

Theorem 3 If the initial duality gap µ0 = C, then after k = O(
√

n ln C
ε) iterations, µk ≤ ε.

Proof: The duality gap is µk ≤ (1 − 0.4√
n
)(
√

n
0.4

ln C
ε
) after k =

√
n

0.4 ln C
ε iterations. Using the fact

that 1− x ≤ e−x, it follows that µk ≤ (e−
0.4√

n)(
√

n
0.4

ln C
ε
) = e− ln C

ε = (ε
C)C = ε ¤

We can now prove Lemma 2 in somewhat more general form. We omit the superscripts k to
make the proof more comprehensible.

Lemma 4 ∆xT ∆s = 0 and µ′ = (1− α(1− σ))µ.

Proof: We know from (1) that
AT ∆y + ∆s = 0

and
A∆x = 0.

Thus
∆xT ∆s = ∆xT (−AT ∆y) = −(A∆x)T ∆y = 0.

Again from (1),
S∆x + X∆s = −XSe + σµe

=⇒ si∆xi + xi∆si = −xisi + σµ ∀i
=⇒ sT ∆x + xT ∆s = −xT s + nσµ (2)

Hence,

µ′ =
1
n

(x + α∆x)T (s + α∆s)

=
1
n

(xT s + α(∆xT s + sT ∆x) + α2∆xT ∆s)

= µ +
α

n
(−xT s + nσµ) (3)

= (1− α(1− σ))µ,

26-4

where (3) follows from (2). ¤

For the case of the short-step algorithm, αk = 1 and σk = (1− 0.4√
n
) so µk+1 = (1− 0.4√

n
)µk as desired.

26-5

