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1 Interior Point Methods

Last time we introduced the logarithmic barrier function

F (x) := − ln(x) := −
n∑

j=1

ln(xj).

F (x) measures how central x is. The point x that minimizes F (x) s.t. Ax = b is called the analytic
center of P = {x : Ax = b}.
Idea: Consider

Bµ(x) := cT x + µF (x)

for µ > 0 defined on F◦(P ) = {x ∈ Rn : Ax = b, x > 0}. The minimizer of Bµ(x) is near optimal
for the original problem if µ is small, and near the analytic center of the feasible region if µ is very
large. We are interested in minimizing Bµ(x) over F◦(P ) and the following theorem gives necessary
and sufficient conditions for the existence of such minimizers.

Theorem 1 (a) For Bµ to have a minimizer on F◦(P ), it is necessary and sufficient for F◦(P )
and F◦(D) = {(y, s) ∈ Rm × Rn : AT y + s = c, s > 0} to be nonempty.

(b) If F◦(P ) and F◦(D) are nonempty, a necessary and sufficient condition for x ∈ F◦(P ) to be
a unique minimizer of Bµ is that ∃ (y, s) ∈ F◦(D) such that

AT y + s = c

Ax = b (1)
XSe = µe

where X = diag(x), S = diag(s), and e = [1, 1, 1, ..., 1]T ∈ Rn.

Insight: If we have x, y, s, x ≥ 0, s ≥ 0 for (1) and µ = 0, then XSe = µe ⇒ xisi = µ = 0, ∀i,
and hence x, y, s are optimal by the complementary slackness condition, since xj > 0 ⇒ sj = 0 ⇒
the constraint i is met with equality.
Proof: ( sufficiency of (a):) Let x̂ ∈ F◦(P ), and (ŷ, ẑ) ∈ F◦(D). Then,

Bµ(x) = cT x + µF (x)

= (AT ŷ + ŝ)
T
x + µF (x) ( ∵ ŷ = (interior) dual feasible ⇒ cT = (AT ŷ + ŝ)

T
)

= ŷT Ax + ŝT x + µF (x)
= ŷT b + ŝT x + µF (x) ( ∵ x ∈ F◦(P ) ⇒ Ax = b)

= bT ŷ +
∑

j

(ŝjxj − µ ln(xj)).
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Note that ŝjxj − µ ln(xj) → ∞ as xj → 0 or xj → ∞. Thus, for all xj , we can compute a lower
bound, xj , and a upper bound, x̄j that intersect with F◦(P ) as shown in the Figure 1 below, i.e.
∃ xj and x̄j such that 0 < xj < xj < x̄j for all x ∈ F◦(P ) such that Bµ(x) ≤ Bµ(x̂). Now, since Bµ

is continuous function on a compact set C = {x ∈ F◦(P ) : x ≤ x ≤ x̄}, by Weierstrass’s theorem,
there exists a minimizer of Bµ on C, and by construction, this is also a minimizer over F◦(P ).

Figure 1: Plot of ŝjxj − µ ln(xj) vs xj

( (b) and necessity of (a):) Suppose x is the minimizer of Bµ over F◦(P ). Then from the discussion
on affine-scaling direction, ∃ y s.t. AT y = c + µ∇F (x) = ∇Bµ(x), since otherwise there exists a
direction to decrease ∇Bµ(x). Hence, ∃ y s.t.

AT y = c + µ∇F (x)
= c + µ(−X−1e)

= c− µ




1/x1

1/x2
...

1/xn


.

Now set

s = µ




1/x1

1/x2
...

1/xn


 > 0

Then since AT y + s = c, this implies (y, s) ∈ F◦(D). Moreover, we have xisi = µ for all i, so that
XSe = µe. Thus, (1) holds.

Finally, we shall show that if (1) holds for x ∈ F◦(P ), and (y, s) ∈ F◦(D), then x is the
minimizer of Bµ. Consider a function

G(x) = (c−AT y)T x + µF (x).
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The gradient of G(x) is

∇G(x) = c−AT y + µ∇F (x)

= c−AT y − µ




1/x1

1/x2
...

1/xn




= c−AT y − s

= 0,

by the fact that (y, s) ∈ F◦(D). Hence, G(x) has a zero gradient at x. Since both F (x) and G(x)
are convex functions, and thus have a unique minimizer, x becomes a unique minimizer of G(x)
over F◦(P ). Now, since Ax = b over F◦(P ), we have

G(x) = cT x− yT Ax + µF (x)

= Bµ(x)− yT b.

Thus, over F◦(P ), Bµ(x) and G(x) differ only by a fixed constant, so minimizing G(x) is equivalent
to minimizing Bµ(x). Therefore, x is a minimizer of Bµ over F◦(P ).

¤

Given some µ, we define the solution (x, y, s) to the system (1) as points on the central path.
Let (x(µ), y(µ), s(µ)) denote solution for a given µ, then {x(µ) : µ > 0} is called the primal central
path, and {x(µ), y(µ), s(µ) : µ > 0} is called the primal-dual central path. We now proceed to find
the solution to the system (1). Note that the first two sets of equations define a system that are
linear but the last is quadratic.

2 Newton’s Method

Our method for solving this system (1) is based on Newton’s method for finding a root of a function.
In the one-dimensional, unconstrained case, we have a function f(x), and we begin with an initial
point x0. We then repeatedly update the point. In iteration k, the tangent line to f at the current
point xk is described by y = f ′(xk)(x− xk) + f(xk) = f ′(xk)∆x + f(xk), where ∆x = x− xk. We
find a value of ∆x such that y = 0, and set xk+1 ← xk + ∆x. Figure 2 below shows an example
of an update in Newton’s method. We repeat this process until the value f(xk) of the function at
the current point is sufficiently close to zero.

Interior-point methods apply the same approach to the system (1). We define a function
F (x, y, s) of the primal and dual solutions (x, y, s) to the linear programs as

F (x, y, s) =




AT y + s− c
Ax− b

XSe− µe.




Our goal is to find solutions (x, y, s) such that F (x, y, s) = 0 and (x, s) ≥ 0. To do this, we make
use of the Jacobian J , which is a matrix of partial derivatives of F .

J(x, y, s) =




0 AT I
A 0 0
S 0 X



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Figure 2: An update by Newton’s method in the one-dimensional, unconstrained case.

Given these definitons, a Newton direction (∆x,∆y, ∆s) is a solution to the following equation:

J(x, y, s)




∆x
∆y
∆s


 + F (x, y, s) = 0.

Over the course of updating the solutions (x, y, s) to the linear programs, we will reduce µ,
causing our solutions to converge to optimal solutions to the linear programs. Suppose that in
some iteration, the current solutions are (x, y, s). We consider the choice µ = 1

n

∑n
i=1 xisi = 1

nxT s;
that is, given our current solution, solving the system for this value of µ makes the xisi equal for
all i. To balance the movement towards the central path against the movement toward optimal
solutions, we maintain a centering parameter σ ∈ [0, 1]. If σ = 1, then our update will move
towards the center of the feasible region. On the other hand, if σ = 0, then our update step is
in the direction of optimal solutions to the linear programs. A step with σ = 1 is referred to as
a centering step, and a step with σ = 0 is referred to as an affine-scaling step. The choice of the
centering parameter σ provides us with a trade-off between moving towards the central path and
moving toward optimal solutions to the linear programs.

We assume we have (x, y, s) so that x ∈ F◦(P ) and (y, s) ∈ F◦(D). We update our current
solutions in the direction (∆x,∆y, ∆s) that solves the following linear system:




0 AT I
A 0 0
S 0 X







∆x
∆y
∆s


 =




0
0

−XSe + σµe




Some interior-point methods examine only the feasible region of the primal linear program, and
as such are known as pure primal interior-point methods. The interior-point algorithm that we
presented here examines the feasible regions of both the primal and the dual linear programs, and
so it is referred to a primal-dual interior-point algorithm.
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Primal-Dual Interior-Point Algorithm

(x0, y0, s0) ← initial feasible point (x0, s0 > 0)
µ0 ← 1

n(x0)T s0

k ← 0
While µk > ε

Solve




0 AT I
A 0 0
Sk 0 Xk







∆xk

∆yk

∆sk


 =




0
0

−XkSke + σkµke




(xk+1, yk+1, sk+1) ← (xk, yk, sk) + αk(∆xk, ∆yk, ∆sk)
where αk is some scaling parameter such that xk+1, sk+1 > 0

µk+1 ← 1
n(xk+1)T sk+1

k ← k + 1

This general framework omits several details that must be addressed in any implementation of
an interior-point algorithm for linear programming. In particular, we have not specified how the
centering parameter σk is chosen, as different interior-point algorithms use different methods to
select σk. Furthermore, other important issues to be addressed are: how to set the threshold ε,
when do we terminate, how do we know that we are making progress, how to find an initial solution
(x◦, y◦, s◦), and how to choose the scaling parameter αk. We will discuss some of this in the next
lecture.
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