
ORIE 6300 Mathematical Programming I November 25, 2008

Lecture 24

Lecturer: David P. Williamson Scribe: Rolf Waeber

Interior-Point Methods

The ellipsoid method is not practically efficient for large scale problems, though very important
theoretically, especially in combinatorial optimization. It can be viewed as an existence proof for
an efficient algorithm. It inspired the search for a practically efficient and theoretically polynomial
time algorithm.

Interior-point methods were initially devised by Karmakar (1984) (although they are closely
related to barrier methods used for linear and nonlinear programming since the 1950s). Since then,
great development has led to more sophisticated interior-point methods that are competitive with
(and are sometimes faster than) the simplex method.

Interior-point methods represent a significant development in the theory and practice of linear
programming. They combine the advantages of the simplex method and of the ellipsoid algorithm.
From a theoretical point of view, they lead to efficient (polynomial time) algorithms and use
interesting geometric ideas; from a practical point of view, they allow the solution to large scale
problems that arise in many applications.

Consider the standard form LP and its dual:

min cT x max bT y
s.t. Ax = b s.t. AT y ≤ c.

x ≥ 0

We assume A is an m× n matrix with rank m.
Note that AT y ≤ c is equivalent to AT y + s = c, s ≥ 0. Therefore consider:

min cT x max bT y
s.t. Ax = b s.t. AT y + s = c

y ≥ 0 s ≥ 0.

We define feasible regions:

F(P ) = {x ∈ Rn : Ax = b, x ≥ 0}
F◦(P ) = {x ∈ Rn : Ax = b, x > 0}
F(D) = {(y, s) ∈ Rm ×Rn : AT y + s = c, s ≥ 0}
F◦(D) = {(y, s) ∈ Rm ×Rn : AT y + s = c, s > 0}

Interior-point methods generate a sequence of points in F◦(P ) or in F◦(P ) × F◦(D) converging
to an optimal solution. In practice, we get with in 10−8 of optimal after 10-50 iterations. These
iterations are more expensive either than a simplex pivot or an ellipsoid iteration. However, in
O(n ln 1

ε ) iterations, they come within a (1 + ε) factor of the optimal value. Some interior-point
methods only need O(

√
n ln 1

ε ) iterations, but usually these algorithms work worse in practice.

24-1



One idea to generate this sequence: given a feasible point x̄ ∈ F◦(P ), we want to “improve”
it, using the “steepest descent” approach to computing the next iteration. The idea is, to find an
improving direction d̄, such that we keep the constraints Ax = b. We want x = x̄ + αd̄, such that

A(x̄ + αd̄) = b

Ax̄ + αAd̄ = b,

which means we require Ad̄ = 0. To make sure that α indeed controls the step length, we condition
that ‖d‖ ≤ 1 (so then ‖x− x̄‖ ≤ α). We want d̄ to be the “steepest descent” direction, so d̄ should
be the solution of the following, where we have u = c:

min uT d
s.t. Ad = 0

‖d‖ ≤ 1.

Lemma 1 Suppose uT is not a linear combination of the rows of A (@ y such that AT y = u), then
the solution to the optimal descent problem is:

d̄ = − PAu

‖ PAu ‖
where

PA = I −AT (AAT )−1A.

Note that if there exists a y such that AT y = u = c, then (y, 0) is feasible for the dual. Since x̄
is feasible for the primal, we have that x̄ obeys complementary slackness with respect to y, which
implies that x̄ is optimal (and indeed any feasible x is optimal).
Proof: First, we check if everything in the lemma is well-defined. Since we assumed that A has
full rank, AAT is positive definite and therefore (AAT )−1 exists.

We start by showing that PAu 6= 0. Suppose, for a contradiction, that

PAu = 0

⇒ (I −AT (AAT )
−1

A)u = 0

⇒ u = AT (AAT )
−1

Au

Since u is now AT z for vector z = (AAT )−1Au, we see that uT is a linear combination of the rows
of A, which contradicts our assumption, and proves the claim.

Consider any d such that Ad = 0. Then since P T
A = I −AT (AAT )−1

A = PA, we have

(PAu)T d = uT PA
T d = uT (I −AT (AAT )

−1
A)d = uT d

since Ad = 0.
So, rather than considering our original linear objective function, it is equivalent to solve the

optimization problem
min (PAu)T d
s.t. Ad = 0

‖ d ‖≤ 1.

Suppose that we ignore the constraint Ad = 0 for the moment. Now, we are simply optimizing
over the unit ball. By the Cauchy-Schwarz theorem, we know that

−‖x‖‖y‖ ≤ xT y ≤ ‖x‖‖y‖.

24-2



Cauchy-Schwarz gives us a lower bound on the objective function:

(PAu)T d ≥ −‖PAu‖ ‖d‖
≥ −‖PAu‖ .

So −‖PAu‖ is the smallest objective function we can hope to get.
If we set

d̄ = − PAu

‖PAu‖
then

(PAu)T d̄ = −‖PAu‖2

‖PAu‖ = −‖PAu‖,

so that this gives us the best possible objective function.
Also,

Ad̄ = − APAu

‖PAu‖

= −A(I −AT (AAT )−1
A)u

‖PAu‖

= −(A−AAT (AAT )−1A)u
‖PAu‖

= −(A−A)u
‖PAu‖

= 0

It follows that d̄ optimizes the descent direction optimization problem. Furthermore, since uT d̄ =
(PAu)T d̄ = −‖PAu‖ < 0, it follows that uT (x + d) < uT x, so that taking a step in the direction of
d̄ improves the objective function value. ¤

Note, that our steepest descent

d̄ = − PAu

‖PAu‖
does not depend on x. This is not a problem, as long as we are not close to the boundary (where
here the boundary corresponds to the x ≥ 0 constraints, since Ax = b is always satisfied). For
example, for x̄ = e (the all 1’s vector):

e =




1
...
1


 ,

(if e is feasible). Our next idea is to rescale the problem, such that we look like we are at e.
Let our current iterate at this step be x. Transform this to x̂ = e by re-scaling as defined below.

By the steepest descent step, get d̄ in this transformed space. We then perform the inverse of our
transform to map the new point back to our original space (as described below).

Given x̄ ∈ Fo(P ), let

X̄ = Diag(x̄) =




x̄1 0 · · · 0
0 x̄2 0
...

. . .
...

0 · · · x̄n




24-3



and consider the linear transformation,

x → x̂ = X̄−1x.

This transforms x̄ to e and our original optimization problem becomes

min cT (X̄x̂) = (X̄c)T x̂
s.t. A(X̄x̂) = b ⇒ (AX̄)x̂ = b

x̂ ≥ 0.

Therefore, in our transformed space, we compute the descent direction

d̂ = − PAX̄X̄c

‖PAX̄X̄c‖ .

Note, d̂ solves

min (X̄c)T d
s.t. (AX̄)d = 0

‖ d ‖≤ 1.

If we now map d̂ from the transformed space back to our original space, we have derived our
new descent direction:

d̄ = X̄d̂ = − X̄PAX̄X̄c

‖PAX̄X̄c‖ .

Note, d̄ solves
min cT d
s.t. Ad = 0

‖X̄−1d‖ ≤ 1.

The direction d̄ is called affine-scaling direction and was introduced by Dikin (1967). This
direction gives a good algorithm, but it is not known if the algorithm terminates in polynomial
time.

Note, that the direction of d̄, i.e. −x̄PAX̄(X̄c), is also the solution to the

min cT d + 1
2dT X̄−2d = cT d + 1

2‖X̄−1d‖2

s.t. Ad = 0.

This shows the tradeoff between improvement in the objective function and the step length.
We can ask the question if there exists a function F such that ∇2F = X̄−2? Note, X̄−2 has the

simple form

X̄−2 =




1
x̄2
1

0 · · · 0
0 1

x̄2
2

0
...

. . .
...

0 · · · 1
x̄2

n




.

Such a function exists. It is called the logarithmic barrier function F :

F (x) = −
n∑

j=1

ln(xj).

Next time we will look at the central path, points which minimize the function cT x + µF (x).

24-4


