ORIE 6300 Mathematical Programming I

November 20, 2008

Lecture 23

Lecturer: David P. Williamson

Scribe: Amy Cochran

1 Termination of the Ellipsoid Method

1.1 Modifying the LP

Consider the system $Cx \leq d$. Let L be the number of bits used to encode C and d. Recall that, via Cramer's Rule, at a vertex x, $|x| \leq 2^{L}$. We can restate our system as follows:

$$Cx \leq d$$

$$x \leq 2^{L}e$$

$$-x \leq 2^{L}e,$$

where e is the vector of all ones.

Lemma 1 1. If $Cx \le d$ is infeasible, then $Cx \le d + \frac{2^{-L}}{n+2}e$ is also infeasible.

2. If $Cx \leq d$ is feasible, then $\exists \hat{x} \text{ such that }$

$$B\left(\hat{x}, \frac{2^{-2L}}{n+2}\right) \subseteq \{x : Cx \le d + \frac{2^{-L}}{n+2}e\},$$

where B(x,r) is a ball centered at x with radius r.

Idea: Run ellipsoid method on the system $Cx \leq d + \frac{2^{-L}}{n+2}e$, since $Cx \leq d$ feasible implies that the new system has volume greater than or equal to that of the $B(\hat{x}, \frac{2^{-2L}}{n+2})$. If $Cx \leq d$ is not feasible, then the new system is also infeasible.

Proof:

1. If $Cx \leq d$ is infeasible, then by Farkas' Lemma, we know that

$$c^T y = 0, d^T y = -1, y \ge 0$$

is feasible. As we claimed before, for any vertex solution, \hat{y} ,

$$|\hat{y}| \le 2^L e.$$

Also, at most n+1 components of \hat{y} are nonzero. Therefore,

$$\left(d + \frac{2^{-L}}{n+2}e\right)^{T}\hat{y} = d^{T}\hat{y} + \frac{2^{-L}}{n+2}\sum_{i}\hat{y}_{i}$$

$$< d^{T}y + 1$$

$$= -1 + 1 = 0.$$

Then \hat{y} satisfies

$$\left(d + \frac{2^{-L}}{n+2}\right)^T \hat{y} < 0,$$

$$c^T \hat{y} = 0$$

$$\hat{y} \geq 0.$$

Then by Farkas' lemma,

$$Cx \le d + \frac{2^{-L}}{n+2}e$$

is infeasible, satisfying part (1) of the lemma.

2. Let \hat{x} be feasible for

$$\begin{array}{rcl} Cx & \leq & d, \\ \hat{x} & \leq & 2^L e, \\ -\hat{x} & \leq & 2^L e. \end{array}$$

Pick any $x \in B(\hat{x}, \frac{2^{-L}}{n+2})$. Then for the jth constraint:

$$C_{j}x = C_{j}\hat{x} + C_{j}(x - \hat{x}),$$

$$\leq d_{j} + ||C_{j}||||x - \hat{x}||,$$

$$\leq d_{j} + 2^{L}\frac{2^{-2L}}{n+2},$$

$$= d_{j} + \frac{2^{-L}}{n+2},$$

where C_j is the jth row of the matrix C. Hence x is feasible for $Cx \leq d + \frac{2^{-L}}{n+2}e$. Since $x \in B(\hat{x}, \frac{2^{-2L}}{n+2})$ was arbitrary, so it must be that

$$B\left(\hat{x}, \frac{2^{-2L}}{n+2}\right) \subseteq \{x : Cx \le d + \frac{2^{-L}}{n+2}\},$$

satisfying part (2) of the lemma.

Question: What happens if we get solution

$$\hat{x} \in \{x : Cx \le d + \frac{2^{-L}}{n+2}e\}$$

but $C\hat{x} \nleq d$?

Idea: Maintain a set, I, of tight constraints.

Consider the following algorithm to get the set I:

For $i \leftarrow 1$ to m

Check feasibility of

$$c_j x = d_j \quad \forall j \in I$$

 $c_i x = d_i$
 $c_j x = d_j \quad j = i + 1, ..., m.$

If feasible

$$I \leftarrow I \cup \{i\}$$

Once the set I is formed then solve $C_i x = d_i$ for all $i \in I$ by Gaussian elimination.

So we see that if we add the bounding constraints and perturb the RHS, we obtain a system for which the ellipsoid method will terminate, and in the case when the obtained solution is infeasible in the original system, we have an algorithm to find a feasible solution.

1.2 Using Ellipsoid Method to Solve LPs

Previously, we gave a 3-step process for finding optimal solution to min $c^T x, Ax \leq b, x \geq 0$ using ellipsoid method. Instead,

- If current center a_k is not feasible since $A_i a_k > b_k$ for some i, then use hyperplane $A_i x \leq A_i a_k$ to break the region into two parts.
- If a_k is feasible, use hyperplane $c^T x \leq c^T a_k$ to break region into two parts and keep the region that contains an optimal solution. (This is called a objective function cut.)

This idea can be extended to a polynomial time algorithm for optimizing linear programs.

2 Application of the Ellipsoid Method

2.1 Applying the Method to TSP LP

Recall the linear programming relaxation of the traveling salesman problem:

$$\begin{array}{lll} \operatorname{Min} & \sum_{e \in E} c_e x_e \\ & \sum_{e \in \delta(s)} x_e & \geq & 2, \qquad \forall S \subset V, S \neq \emptyset \\ & \sum_{e \in \delta(v)} x_e & = & 2, \qquad \forall v \in V \\ & x_e & \leq & 1 \qquad \forall e \in E \\ & x_e & \geq & 0 \qquad \forall e \in E. \end{array}$$

We want to solve this LP in polynomial time, but the number of constraints is exponential in |V|. To run the ellipsoid method, we need to determine if the center is feasible, and, in the case when it is infeasible, give a violated constraint. If we can do this in polynomial time, then we can solve the LP in polynomial time.

Question: For TSP LP, can we tell if x is feasible and find the violated constraint if it is not feasible?

Idea: If we treat x_e as a capacity we can apply the idea of minimum s-t cuts to the problem and use the min-cut/max-flow theorem.

Pick arbitrary $s, t \in V$. If $\exists S \subset V$ such that

$$\sum_{e \in \delta(S)} x_e < 2, \qquad s \in S, t \not \exists S,$$

then the maximum s-t flow is less than 2. Max-flow problems can be solved in polynomial time. Therefore, we check to see if

$$\sum_{e \in \delta(S)} x_e \ge 2$$

for all possible s-t pairs. If the flow values are at least 2 for all possible $s, t \in V$, then we know that all the constraints

$$\sum_{e \in \delta(S)} x_e \ge 2$$

are satisfied for all S. If the flow value is less than 2 for some s-t pair, then the corresponding minimum s-t cut gives a violated constraint of the linear program. Hence we can either detect if x is feasible or find a violated constraint if x is not feasible in polynomial time.

2.2 More General Problems

Given a polynomial time <u>separation oracle</u>, LPs can be solved in polynomial time (modulo some technicalities). More general problems can be solved using the ellipsoid method, e.g. convex regions, given an algorithm that finds separating hyperplanes.