1 Ellipsoid Method for LP (cont'd)

Recall that we want to build an ellipsoid method to decide if $\exists x \in P=\left\{x \in \mathbb{R}^{n}: C x \leq d\right\}$, which returns $x \in P$ if any exists, or output "infeasible" if $P=\emptyset$. For convenience, we assume P is bounded. Recall that we defined L to be the number of bits needed to represent C, d in binary.

Let E_{0} be a sphere centered at $a_{0}=0$, with radius 2^{L}. It has been shown last time that we have $P \subseteq E_{0}$, and volume $\left(E_{0}\right)=2^{O(n L)}$.

Here is the ellipsoid method. In each step, if the center of the ellipsoid $a_{k} \in P$, then the purpose has been achieved, return a_{k}; otherwise, there exists C_{j}, a row of C, such that $C_{j} a_{k}>d_{j}$. Compute a new ellipsoid

$$
E_{k+1} \supseteq E_{k} \cap\left\{x: C_{j} x \leq C_{j} a_{k}\right\}
$$

Repeat.
By construction, if $P \subseteq E_{k}$, then $P \subseteq E_{k+1}$. We claimed the following last time:

1. After $O(n)$ iterations, the volume of current ellipsoid has dropped by a factor of at least 2 .
2. If volume of E_{k} is $2^{-c n L}$ for some c, and $P \subseteq E_{k+1}$, then $P=\emptyset$.

If these two claims are true, then after $O\left(n^{2} L\right)$ iterations, either the algorithm outputs some $x \in P$, or it correctly stops, and outputs "infeasible".

Figure 1: General Case for Unit Sphere

Figure 2: The Case Solved in Problem Set

From last time and the question in the problem set, we know if E_{0} is the n-dimensional unit sphere (with $a_{0}=0$), and $C_{j}=-e_{1}^{T}$, then for

$$
E_{1}=\left\{x \in \mathbb{R}^{n}:\left(\frac{n+1}{n}\right)^{2}\left(x_{1}-\frac{1}{n+1}\right)^{2}+\frac{n^{2}-1}{n^{2}} \sum_{i=2}^{n} x_{i}^{2} \leq 1\right\}
$$

then $E_{1} \supseteq E_{0} \cap\left\{x: c_{j} x \leq c_{j} a_{0}\right\}$, and volume $\left(E_{1}\right) \leq e^{-\frac{1}{2(n+1)}}$ volume $\left(E_{0}\right)$. Today, we want to extend this result to general case, where $E=E_{0}$ is any ellipsoid with center $a=a_{0}$, and $C_{j}=c^{T}$ is any constraint. We will show that there exists E^{\prime} and a^{\prime}, such that $E^{\prime} \supseteq E \cap\left\{x: c^{T} x \leq c^{T} a\right\}$, and $\operatorname{volume}\left(E^{\prime}\right) \leq e^{-\frac{1}{2(n+1)}} \operatorname{volume}(E)$. Note that this implies volume $\left(E_{k+2(n+1)}\right) \leq e^{-1} \operatorname{volume}\left(E_{k}\right)$, as claimed.

We will write an ellipsoid given its center a and a matrix A as:

$$
E(a, A)=\left\{x \in \mathbb{R}^{n}:(x-a)^{T} A^{-1}(x-a) \leq 1\right\}
$$

where the matrix A should be symmetric and positive definite (that is, $v^{T} A v>0, \forall v \in \mathbb{R}^{n}$). Thus for the ellipsoid that we saw before, $E_{1}=E(a, A)$ for $a=\frac{1}{n+1} e_{1}, A=\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} e_{1} e_{1}^{T}\right)$.

First, suppose that $E_{0}=E(0, I)$, the unit sphere centered at origin, but now we have arbitrary constraint c. Assume $\|c\|=1$. (i.e., $c^{T} c=1$). In order to handle this, the main idea is to reduce to previous case. Consider applying a rotation $y=T(x)$, so that $-e_{1}=T(c)$. Then rotate E_{1} back using T^{-1}.

Since T is a rotation, $y=T(x)=U x$ for some orthonormal matrix $U\left(U^{T}=U^{-1}\right)$. We want $U c=-e_{1}$, so $c=-U^{-1} e_{1}=-U^{T} e_{1}$. In the transformed space, the desired ellipsoid is $\left\{x \in \mathbb{R}^{n}:(U x-a)^{T} A^{-1}(U x-a) \leq 1\right\}$. Since $U^{T} U=I$, this is the same as $\{x:(U x-$ $\left.a)^{T} U U^{T} A^{-1} U U^{T}(U x-a) \leq 1\right\}$.

Figure 3: Rotation
Now we observe that

$$
\begin{aligned}
(U x-a)^{T} U & =\left((U x)^{T}-a^{T}\right) U \\
& =\left(x^{T} U^{T}-a^{T}\right) U \\
& =x^{T}-a^{T} U \\
& =\left(x-U^{T} a\right)^{T}
\end{aligned}
$$

and

$$
U^{T}(U x-a)=x-U^{T} a
$$

where we define

$$
U^{T} a=U^{T}\left(\frac{1}{n+1} e_{1}\right)=-\frac{1}{n+1} e=: \hat{a}
$$

If we set $\hat{A}^{-1}=U^{T} A^{-1} U$, then we get

$$
\begin{aligned}
\hat{A} & =\left(U^{T} A^{-1} U\right)^{-1} \\
& =U^{-1} A\left(U^{-1}\right)^{T} \\
& =\frac{n^{2}}{n^{2}-1} U^{T}\left(I-\frac{2}{n+1} e_{1} e_{1}^{T}\right) U \\
& =\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1}\left(U^{T} e_{1}\right)\left(e_{1}^{T} U\right)\right) \\
& =\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1}(-c)\left(-c^{T}\right)\right) \\
& =\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} c c^{T}\right)
\end{aligned}
$$

Therefore in this case,

$$
E^{\prime}=\left\{x \in \mathbb{R}^{n}:(x-\hat{a})^{T} \hat{A}^{-1}(x-\hat{a}) \leq 1\right\}
$$

Since we only performed a rotation, the volume did not change. So volume $\left(E^{\prime}\right) \leq e^{-\frac{1}{2(n+1)}}$ volume $\left(E_{0}\right)$.
Now what if E is not the unit sphere but a general ellipsoid? The idea is to transform E into unit sphere centered at origin via transform $T(x)=y$, apply the result of the previous case, then transform it back via T^{-1}.

Figure 4: Case of General Ellipsoid

Let $E=E_{k}=E\left(a_{k}, A_{k}\right)$. Since A_{k} is positive definite, $A_{k}=B^{T} B$ for some B. Then $A_{k}^{-1}=$ $B^{-1}\left(B^{-1}\right)^{T}$, and

$$
E\left(a_{k}, A_{k}\right)=\left\{x:\left(x-a_{k}\right)^{T} B^{-1}\left(B^{-1}\right)^{T}\left(x-a_{k}\right) \leq 1\right\}
$$

If we set $y=T(x)=\left(B^{-1}\right)^{T}\left(x-a_{k}\right)$, we will get

$$
y^{T} y \leq 1
$$

So T transforms E_{k} into $E(0, I) . T^{-1}(y)=x=B^{T} y+a_{k}$.

The hyperplane in the original space $d^{T} x \leq d^{T} a_{k}$ becomes $d^{T}\left(B^{T} y+a_{k}\right) \leq d^{T} a_{k}$, thus $d^{T} B^{T} y \leq$ 0 after the transform T. We want $c^{T} y \leq 0$ for $\|c\|=1$, therefore set

$$
c^{T}=\frac{d^{T} B^{T}}{\left\|d^{T} B^{T}\right\|}
$$

hence

$$
c=\frac{B d}{\sqrt{d^{T} A d}} .
$$

In the transformed space, we have

$$
E^{\prime}=\left\{y:\left(y+\frac{1}{n+1} c\right)^{T} F^{-1}\left(y+\frac{1}{n+1} c\right) \leq 1\right\},
$$

where

$$
F=\hat{A}=\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} c c^{T}\right) .
$$

Now substitute $y=\left(B^{-1}\right)^{T}\left(x-a_{k}\right)$ to get back to the original space. We have

$$
\begin{gathered}
E_{k+1}=\left\{x:\left(\left(B^{-1}\right)^{T}\left(x-a_{k}\right)+\frac{1}{n+1} c\right)^{T} F^{-1}\left(\left(B^{-1}\right)^{T}\left(x-a_{k}\right)+\frac{1}{n+1} c\right) \leq 1\right\}, \\
E_{k+1}=\left\{x:\left(\left(x-a_{k}\right)^{T} B^{-1}+\frac{1}{n+1} c^{T}\right) F^{-1}\left(\left(B^{-1}\right)^{T}\left(x-a_{k}\right)+\frac{1}{n+1} c\right) \leq 1\right\}
\end{gathered}
$$

If we set $a_{k+1}=a_{k}-\frac{1}{n+1} B^{T} c$, then

$$
E_{k+1}=\left\{x:\left(x-a_{k+1}\right)^{T} B^{-1} F^{-1}\left(B^{-1}\right)^{T}\left(x-a_{k+1}\right) \leq 1\right\} .
$$

If we set $\hat{F}^{-1}=B^{-1} F^{-1}\left(B^{-1}\right)^{T}$, then

$$
\begin{aligned}
\hat{F}=B^{T} F B & =\frac{n^{2}}{n^{2}-1} B^{T}\left(I-\frac{2}{n-1} c c^{T}\right) B \\
& =\frac{n^{2}}{n^{2}-1}\left(A_{k}-\frac{2}{n+1}\left(B^{T} c\right)\left(B^{T} c\right)^{T}\right) \\
& =\frac{n^{2}}{n^{2}-1}\left(A_{k}-\frac{2}{n+1} b b^{T}\right)
\end{aligned}
$$

where we set $b=B^{T} c$. Then $a_{k+1}=a_{k}-\frac{b}{n+1}$, and $A_{k+1}=\hat{F}=\frac{n^{2}}{n^{2}-1}\left(A_{k}-\frac{2}{n+1} b b^{T}\right)$.
Since the ratios of volumes are preserved under linear transformation,

$$
\frac{\operatorname{volume}\left(E_{k+1}\right)}{\operatorname{volume}\left(E_{k}\right)}=\frac{\operatorname{volume}\left(E^{\prime}\right)}{\operatorname{volume}\left(E_{0}\right)} \leq e^{-\frac{1}{2(n+1)}} .
$$

