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1 Ellipsoid Method for LP (cont’d)

Recall that we want to build an ellipsoid method to decide if ∃x ∈ P = {x ∈ Rn : Cx ≤ d}, which
returns x ∈ P if any exists, or output “infeasible” if P = ∅. For convenience, we assume P is
bounded. Recall that we defined L to be the number of bits needed to represent C, d in binary.

Let E0 be a sphere centered at a0 = 0, with radius 2L. It has been shown last time that we
have P ⊆ E0, and volume(E0) = 2O(nL).

Here is the ellipsoid method. In each step, if the center of the ellipsoid ak ∈ P , then the purpose
has been achieved, return ak; otherwise, there exists Cj , a row of C, such that Cjak > dj . Compute
a new ellipsoid

Ek+1 ⊇ Ek ∩ {x : Cjx ≤ Cjak}.
Repeat.

By construction, if P ⊆ Ek, then P ⊆ Ek+1. We claimed the following last time:

1. After O(n) iterations, the volume of current ellipsoid has dropped by a factor of at least 2.

2. If volume of Ek is 2−cnL for some c, and P ⊆ Ek+1, then P = ∅.
If these two claims are true, then after O(n2L) iterations, either the algorithm outputs some

x ∈ P , or it correctly stops, and outputs “infeasible”.

Figure 1: General Case for Unit Sphere Figure 2: The Case Solved in Problem Set

From last time and the question in the problem set, we know if E0 is the n-dimensional unit
sphere (with a0 = 0), and Cj = −eT
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then E1 ⊇ E0∩{x : cjx ≤ cja0}, and volume(E1) ≤ e
− 1

2(n+1) volume(E0). Today, we want to extend
this result to general case, where E = E0 is any ellipsoid with center a = a0, and Cj = cT is any
constraint. We will show that there exists E′ and a′, such that E′ ⊇ E ∩ {x : cT x ≤ cT a}, and

volume(E′) ≤ e
− 1

2(n+1) volume(E). Note that this implies volume(Ek+2(n+1)) ≤ e−1volume(Ek), as
claimed.

We will write an ellipsoid given its center a and a matrix A as:

E(a,A) = {x ∈ Rn : (x− a)T A−1(x− a) ≤ 1},

where the matrix A should be symmetric and positive definite (that is, vT Av > 0, ∀v ∈ Rn). Thus
for the ellipsoid that we saw before, E1 = E(a,A) for a = 1

n+1e1, A = n2

n2−1

(
I − 2

n+1e1e
T
1

)
.

First, suppose that E0 = E(0, I), the unit sphere centered at origin, but now we have arbitrary
constraint c. Assume ‖c‖ = 1. (i.e., cT c = 1). In order to handle this, the main idea is to reduce
to previous case. Consider applying a rotation y = T (x), so that −e1 = T (c). Then rotate E1 back
using T−1.

Since T is a rotation, y = T (x) = Ux for some orthonormal matrix U (UT = U−1). We
want Uc = −e1, so c = −U−1e1 = −UT e1. In the transformed space, the desired ellipsoid is
{x ∈ Rn : (Ux − a)T A−1(Ux − a) ≤ 1}. Since UT U = I, this is the same as {x : (Ux −
a)T UUT A−1UUT (Ux− a) ≤ 1}.

Figure 3: Rotation

Now we observe that
(Ux− a)T U = ((Ux)T − aT )U

= (xT UT − aT )U
= xT − aT U
= (x− UT a)T ,

and
UT (Ux− a) = x− UT a,

where we define

UT a = UT

(
1

n + 1
e1

)
= − 1

n + 1
e =: â.
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If we set Â−1 = UT A−1U , then we get

Â = (UT A−1U)−1

= U−1A(U−1)T

=
n2

n2 − 1
UT (I − 2

n + 1
e1e

T
1 )U

=
n2

n2 − 1
(I − 2

n + 1
(UT e1)(eT

1 U))

=
n2

n2 − 1
(I − 2

n + 1
(−c)(−cT ))

=
n2

n2 − 1
(I − 2

n + 1
ccT ).

Therefore in this case,

E′ = {x ∈ Rn : (x− â)T Â−1(x− â) ≤ 1}.

Since we only performed a rotation, the volume did not change. So volume(E′) ≤ e
− 1

2(n+1) volume(E0).
Now what if E is not the unit sphere but a general ellipsoid? The idea is to transform E into

unit sphere centered at origin via transform T (x) = y, apply the result of the previous case, then
transform it back via T−1.

Figure 4: Case of General Ellipsoid

Let E = Ek = E(ak, Ak). Since Ak is positive definite, Ak = BT B for some B. Then A−1
k =

B−1(B−1)T , and
E(ak, Ak) = {x : (x− ak)T B−1(B−1)T (x− ak) ≤ 1}.

If we set y = T (x) = (B−1)T (x− ak), we will get

yT y ≤ 1.

So T transforms Ek into E(0, I). T−1(y) = x = BT y + ak.
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The hyperplane in the original space dT x ≤ dT ak becomes dT (BT y+ak) ≤ dT ak, thus dT BT y ≤
0 after the transform T . We want cT y ≤ 0 for ‖c‖ = 1, therefore set

cT =
dT BT

‖dT BT ‖ ,

hence
c =

Bd√
dT Ad

.

In the transformed space, we have

E′ =
{

y : (y +
1

n + 1
c)T F−1(y +

1
n + 1

c) ≤ 1
}

,

where

F = Â =
n2

n2 − 1
(I − 2

n + 1
ccT ).

Now substitute y = (B−1)T (x− ak) to get back to the original space. We have

Ek+1 =

{
x :

(
(B−1)T (x− ak) +

1
n + 1

c

)T

F−1

(
(B−1)T (x− ak) +

1
n + 1

c

)
≤ 1

}
,

Ek+1 =
{

x :
(

(x− ak)T B−1 +
1

n + 1
cT

)
F−1

(
(B−1)T (x− ak) +

1
n + 1

c

)
≤ 1

}
.

If we set ak+1 = ak − 1
n+1BT c, then

Ek+1 = {x : (x− ak+1)T B−1F−1(B−1)T (x− ak+1) ≤ 1}.

If we set F̂−1 = B−1F−1(B−1)T , then

F̂ = BT FB =
n2

n2 − 1
BT

(
I − 2

n− 1
ccT

)
B

=
n2

n2 − 1

(
Ak − 2

n + 1
(BT c)(BT c)T

)

=
n2

n2 − 1

(
Ak − 2

n + 1
bbT

)
,

where we set b = BT c. Then ak+1 = ak − b
n+1 , and Ak+1 = F̂ = n2

n2−1

(
Ak − 2

n+1bbT
)
.

Since the ratios of volumes are preserved under linear transformation,

volume(Ek+1)
volume(Ek)

=
volume(E′)
volume(E0)

≤ e
− 1

2(n+1) .
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