ORIE 6300 Mathematical Programming I November 13, 2008

Lecture 21
Lecturer: Robert Kleinberg Scribe: Shanshan Zhang

1 NP-Completeness (continued)
Theorem 1 If Il is NP-complete and 11 € P, then P = NP.

Proof: Let II' € NP. We want to show IT' € P. Since II is NP-complete, we have IT" < II. In
other words, there is a function f computable in time p;(n) such that z € II' iff f(x) € II. Since
IT € P, there is an algorithm running in time P»(n) that decides II. To see if = € I, compute f(x)
then decide if f(x) € II. Therefore, the total running time is P;(n) + P2(Pi(n)) = poly(n). Thus,
if IT is NP-Complete and II € P, then P = NP. O

Theorem 2 If IIy < II; < Ils, then IIy < 1ls.

Proof: Suppose f, g are reductions from Ily to IIy, II; to Ilo, respectively. Then, the following
statements are satisfied:

1. runtime(f)=Ps(n);
2. runtime(g)=Fy(n);
3. f(z) eIl iff x € Tp;
4. gy) €Ty iff y € T1;.

Thus, the reduction from IIy to Ilp is go f. = € Iy iff f(x) € II; iff g(f(z)) € Ia. The runtime is:
P¢(n) + Py(P¢(n)) = poly(n). Therefore, if IIy < II; < Iy, then IIy < IIs. O

Corollary 3 IfII is NP-complete and I1 < Il and II' € NP, then I' is NP-complete.

Proof: Given IIy € NP, IIy < II < IT". According to the above theorem, ITg < IT'. Thus, II’ is
NP-complete.]
We use the following steps to prove II is NP-Complete.

1. Show IT € NP;

2. Choose an NP-complete IT';

3. Design the reduction from II" to IT;

4. Prove the reduction runs in polynomial time;
5. Prove that = € II' iff f(z) € II;

In common cases, the step (2) and (3) are hard, while other steps are relatively easy. To get
started with proving problems are NP-complete, we first need some NP-complete problem to start
with.

21-1

Theorem 4 (Cook-Levin Theorem) SAT is NP-Complete.

We skip the proof here. We just give several examples using this result to show some problems
are NP-complete.

Example 1: SAT < 0-1 Integer Programming, thus 0-1 IP is NP-Complete.

Example 2: Define 3-SAT as SAT restricted to instances with less than or equal to 3 variables
per clause. Then we have SAT < 3-SAT. We show that by splitting a clause. Take a clause C of size
K > 4. Rewrite it as C; A\ Cq of sizes K = 1,2,3. For example, let C' = (z1\/ 22V Z3\V 24\ T5).
We rewrite it as C; /A C2, where C1 = (x1\/ 72 \/ 23 2) and Cy = (Z\/ 4 \/ z5). In every boolean
assignment satisfying C1 A Ca, C is also satisfied. If a boolean assignment Xsatisfies C' then either
(X,T) or (X, F) satisfies C; \ Ca. We use the following algorithm to get the reduction from SAT
to 3-SAT.

Inputs: formula ®

while (® contains clause C of size K > 4)
split C' to C1 A\ Cy
replace C' in ® by C7 and (s
endwhile.
So why the process is completed in a polynomial time? Think about it offline.

Next we will talk about NP-complete graph theoretic problems. First up, we will give some
basic definitions. Suppose G = (V, E) is an undirected graph.

Definition 1 A clique in G is a subset S C V' such that every pair u,v € S are jointed by an edge
in G.

Definition 2 An independent set is S C V such that every pair u,v € S is not joined by edge in
G.

Definition 3 A vertex cover is a S CV such that every edge has at least one endpoint in S.

For example, for the following graph, {a,b,c} is a clique; {b, e} is an independent set; {a,b, e}
is a vertex cover.

Given a graph G and k € N, are following questions NP-complete?
1. G has a clique whose size is greater than or equal to k;

2. G has an independent set whose size is greater than or equal to k;
3. G has a vertex cover whose size is less than or equal to k.

Actually, they are all NP-complete. We will prove them one by one.

Theorem 5 Clique is NP-complete.

21-2

Proof: An input to the Clique problem is a pair (G, k), where G is a graph and k is a number,
and we want to decide if 3 a complete subgraph (a subset of nodes such that each pair of nodes
have an edge between them) of G with k£ nodes.

We can prove that Clique is an NP-complete problem by proving that 3-SAT < Clique.

The idea is the following: Given an input (I1, Vi1, V1) A+ A (L Vlmy V lmg) to the 3-SAT
problem, we can set k = m, and create the following graph, where we have exactly one node for
each literal in each clause, and we only connect nodes that come from different clauses, provided
that the first node is not the negation of the second.

S i 0 o °
X1 ’)_(4

0 -------- O @ e o
X4~ . X1

Q@---------- o le) o
Xs X7

Cl C2 C3 Cm

Now, we prove that the 3-SAT formula is satisfiable if and only if there is a clique of size k
in the graph. Suppose that the 3-SAT formula is satisfiable. Focus on one satisfying assignment
for the formula, and for each clause, choose one of the literals that are made “true” by it. These
literals correspond to nodes in the graph that form a clique of size m = k. (If there isn’t an edge
between a pair of nodes, then the two endpoints must correspond to a literal and its negation,
both of which could not have been made ‘true” in the assignment.) On the other hand, suppose
that there is a clique of size k. For each clause, there is no edge between any pair of the nodes
corresponding to it, so from each triple of nodes, there can be at most one node in the clique. But
there are only m = k such triples, and so, in fact, the clique must have, for each clause, exactly
one node corresponding to a literal in that clause. But now, we see that we can make a consistent
assignment to those literals (because there is an edge between each pair of them) so that they are
all true. And this yields an assignment that makes the 3-SAT formula “true”. U

Theorem 6 Clique < Independent Set.
Proof: S is a clique of size k in G iff S is an independent set of size k in G. O
Theorem 7 Independent Set < Vertex Cover.

Proof: S is an independent set iff S is a vertex cover.]
Recall that when we discussed the Knapsack Problem, which, in its general form, is given as
follows:

max (%
SC{1,..,n} 4
C{t.n} iz

st D iegwi W

we gave dynamic programming algorithms that ran in O(nW?) time (Recall that the number of
bits required to encode W is logy W, therefore O(nW?2) is not a polynomial running time.)

Note that there is also the issue of hardness for NP-complete problems, i.e., not all NP-complete
problems are equally hard to solve. Let us take the Knapsack problem as an example. Although

21-3

the decision version of this problem is NP-complete, it is typically not very hard to solve. For
example, it is completely routine to solve large inputs by standard IP branch-and-cut methods.
Furthermore, when we try to decide whether O(nW) is good or bad, we can claim that if we give
up some accuracy, we can find an efficient algorithm that can approximate the optimal solution
(by forcing W to be small), in polynomial time; so it is not that bad. So actually, the question
“Can I solve it or not?” is highly problem dependent and NP-hardness is not a completely reliable
yardstick. In contrast, for example, we can say that the Quadratic Assignment Problem (a problem
once called violently hard), is still hard to solve whereas the Knapsack problem is typically not that
hard. Nonetheless, we will prove the following, about the decision version of the knapsack problem,

where we are also given a threshold V', and ask whether there is a feasible solution of value at least
V.

Theorem 8 Knapsack Problem is NP-complete.

Proof: We will start with Vertex Cover problem, reduce it to Subsetsum problem, which in
turn will be reduced to the decision version of the Knapsack Problem, i.e.:

Vertex Cover < Subsetsum < Knapsack Problem

Definition 4 The Subsetsum Problem can be defined as follows: Given an input {ai,as,...an,T},
does there exist S C {1,...,n} s.t. Y ,cqa; =T ?

In order to reduce this problem to knapsack problem, we will set W =V = T. It is straightfor-
ward to verify this reduction is correct.

As for the vertex cover problem, note that whether the graph is connected or not does not
matter for our proof but for the sake of simplicity, let us assume it is connected.

The idea will be to show that there is a good vertex cover if and only if there exists a subsetsum
Duiesai =T

Note that there are almost no numbers in our vertex cover problem (except for k), therefore we
will try to create some numbers by the following way:

[Mogak 1+ 1 er | & | es | o |ena| en
T... T 10| 0|0 o 1o 1jaf1fo 11001110
1.... 0 0 0 0 1T]0
2...lw| O 0 0) 1T]0
..l 0] 0] 1 1:
B : 1 01
= : 1
0 0 0 1 10 0]
0 ool
@ : 011
=)
o
©| 0 0
N 0 0

21-4

A vertex cover of size k will correspond to a subset of rows of this matrix that add up to T}
the first [logy k] + 1 columns (bits) of the top row, specifying T' give the binary representation of
the number k. Then these columns are separated from the edge columns (denoted on top of the
columns by ey, eg, ...,e,) by the thick boundary in the figure. The edges are given two columns
each, in which the binary number 10 appears on the top row (corresponding to T'); each edge (with
its two columns) is separated from the next by the double boundary in the figure. Each row (except
the first) corresponds to either a vertex, or an edge. For each row corresponding to a vertex, in the
leading bits (corresponding to those columns where we encoded k in T') we encode the value 1 (that
is, leading 0’s ending with a single 1). For each row corresponding to an edge, in the leading bits
we encode the value 0 (that is, all 0’s). Now we describe the entries in the columns corresponding
to the edges. For each pair of columns value, the left bit (corresponding to 2!) for each row (i.e.,
except for the row corresponding to T') is 0. The right bit of the pair for an edge uv (corresponding
to 2°) is 1 for the rows corresponding to v and v, and 0 for all other vertex rows. The right bit of
the pair is equal to 1 for the edge row corresponding to uv, but 0 for all other edge rows. Hence,
for each column pair, there are exactly 3 rows with value 1, and the rest are 0. This ensures that
no matter which rows we select, we will never “carry” across our double line borders.

Suppose that there is a vertex cover of size k. We can build a set S by including all of those
rows corresponding to vertices in this cover, as well as each edge row corresponding to edges for
which exactly one endpoint is contained in S. The leading bits add up to the assigned target since
k nodes are in .5, and for each column pair, we have selected exactly two rows with the entries 01
in it, and hence they add up correctly. It is easy to deduce this backwards (given the “no carry”
across thick lines structure). If there are a subset of rows that add up to 7', the vertex rows selected
must exactly correspond to a vertex cover of size k. O

21-5

